
IEEE TRANSACTIONS ON MEDICAL IMAGING, VOL. XX, NO. XX, XXXX 2020 1

Contrastive and Selective Hidden Embeddings
for Medical Image Segmentation

Zihao Liu, Zhuowei Li, Zhiqiang Hu, Qing Xia, Ruiqin Xiong, Shaoting Zhang* and Tingting Jiang*

Abstract— Medical image segmentation is fundamental
and essential for the analysis of medical images. Although
prevalent success has been achieved by convolutional
neural networks (CNN), challenges are encountered in the
domain of medical image analysis by two aspects: 1) lack
of discriminative features to handle similar textures of
distinct structures and 2) lack of selective features for
potential blurred boundaries in medical images. In this
paper, we extend the concept of contrastive learning (CL)
to the segmentation task to learn more discriminative repre-
sentation. Specifically, we propose a novel patch-dragsaw
contrastive regularization (PDCR) to perform patch-level
tugging and repulsing. In addition, a new structure, namely
uncertainty-aware feature re-weighting block (UAFR), is de-
signed to address the potential high uncertainty regions
in the feature maps and serves as a better feature re-
weighting. Our proposed method achieves state-of-the-
art results across 8 public datasets from 6 domains. Be-
sides, the method also demonstrates robustness in the
limited-data scenario. The code is publicly available at
https://github.com/lzh19961031/PDCR UAFR-MIS.

Index Terms— Medical image segmentation, contrastive
learning, uncertainty learning, neural network.

I. INTRODUCTION

Medical image segmentation (MIS) has been widely recog-
nized as a pivot procedure for clinical diagnosis, analysis, and
treatment planning. Despite breakthroughs driven by convo-
lutional neural networks (CNN) in recent years, the pace of
development for MIS is hindered by two challenges: 1) hard
to obtain more discriminative features to tackle the ambiguous
boundary and the smooth between-class transition of medical
images [1] and 2) difficult to generate more selective features
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for heterogeneous textures and ambiguous boundaries in medi-
cal images [2]. These two challenges prevent CNN from better
representation learning and more precise segmentation results.

In the past three years, contrastive learning (CL) has brought
impressive breakthroughs and established an overwhelming
presence in learning more discriminative representation, which
is very suitable for tackling the first challenge. The core
concept of CL is the formulation of “pair” [3]–[9]. The
formulation includes two aspects: the component of “pair”
and the relationship of the components within one “pair”.
In previous work, the component is defined as an individual
image. The relationship is a rigid bipartition: “positive” or
“negative”. For example, different augmentations of one image
could be defined as a “positive pair”, whose representation
will be pulled together during learning. Distinct images could
be defined as a “negative pair”, whose representation will be
pushed away. This design is firstly utilized in the unsupervised
scenario for backbone pretraining, such as ResNet [10], etc.
For supervised classification, [11] extends the definition of
“negative pairs” from inter-image to inter-category. Although
contrastive learning has been attempted to facilitate MIS [12],
[13], they still follow the unsupervised training scheme, and
take CL for backbone pretraining. However, the existing
formulation of “pair” may not suit MIS due to the following
issues:

• The component of “pair”. MIS aims to predict the class
label for each pixel within one image, which focuses
on intra-image discrimination, instead of inter-image. In
this sense, it poses demands for more distinctive local
representation learning. Therefore, it would be more
helpful to involve two entities within one image (e.g. local
patches or regions) as the component of a pair, instead of
two images, for modeling the intra-image relationship.

• The relationship within one “pair”. If the component
of a pair corresponds to one entity of an image, the
relationship between components becomes the relation-
ship between two entities within one image. Because
medical images have the characteristic that the transition
between different classes is smooth and the boundary is
ambiguous, the representation of components of a pair
could be similar. Therefore, the relationship between two
entities within one image should be also smooth. So the
previous rigid bipartition for relationship is inappropriate
which could lead to sub-optimal solutions of MIS.

Thus how to effectively formulate “pair” to improve CL for
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medical image segmentation task is important.
In this paper, we propose a new formulation of “pair”.

Specifically, we argue that local patches, instead of the whole
image, are more appropriate for the component of “pair”.
Besides, the relationship formulation should also be different.
Pairs are not rigidly bipartite as either positive or negative, but
should have a more soft relationship. So here the question is:
specifically, how to associate patches with its representation
for CL? And how could we measure the relationship between
different patches?

To this end, we introduce the patch-dragsaw contrastive
regularization (PDCR). Two ways are proposed to associate
patches with their representations: the receptive-field-based
patch-dragsaw (RF-PDCR) and the hierarchical patch-dragsaw
(H-PDCR). RF-PDCR, which could be seen as a special case
of H-PDCR, is an intuitive and direct way to achieve this.
It borrows the concept of the receptive field [14] in MIS
framework to link each feature vector from a certain layer
with a local patch of a certain location and size. However, RF-
PDCR is hard to be conducted among features from deeper
levels (e.g. decoder) of the network and across multi-levels,
due to the applicability and the characteristic of the receptive
field concept. Thus, to extend the applicability and tackle the
limitation of RF-PDCR, we further put forward H-PDCR.
Specifically, for any layer in CNN, each feature vector is
associated with a hierarchical patch series including different
sizes of patches, to take advantage of the comprehensiveness
of multi-scale information. In this way, both single-level CL
and multi-level CL could be achieved.

On the other hand, for the relationship, affinity score is
proposed to measure the similarity of two patches, which
serves in a soft matter, instead of rigid bipartition. It is
calculated based on the foreground ratio for each patch, which
is a straightforward and easily-quantifiable metric designed
to measure the characteristic of each patch itself. The soft
similarity determines the coexisting of tugging and repulsing
for the representation of each pair, which could be figuratively
described as dragsaw. In this way, PDCR aims to strike a
balance that respects the segmentation task as well as exploits
the contrastive power.

For the second challenge, due to ambiguous boundaries and
heterogeneous textures in medical images [2], high uncertainty
would come up upon the classification of pixels in these areas,
which generates high gradients during training. Along the
training process, these high gradients may distract the learning
attention of the network and mislead the optimization. Thus,
the minority of features with high uncertainty may harm the
network. To solve this problem, we introduce the uncertainty-
aware feature re-weighting (UAFR), to ease the influence
of pixels with high uncertainty and for a better feature re-
weighting. It models the uncertainty for each pixel by gen-
erating an uncertainty-aware map, then highlights pixels with
low uncertainty while suppressing those with high uncertainty.
Notice that UAFR does not need any supervision.

It is worth mentioning that both PDCR and UAFR are
designed and implemented in a “lightweight plugin” fashion,
meaning that they can be easily integrated into existing seg-
mentation frameworks or training pipelines without extra pre-

training. Experiments are conducted across 8 public datasets
from 6 domains. The results show that our method consistently
outperforms previous work.

Our main contribution can be summarized threefold:
• A new formulation of “pair” is proposed to improve the

contrastive learning for supervised MIS, including the
component and the relationship of “pair”. On this basis, a
novel Patch-dragsaw contrastive regularization (PDCR)
is proposed to regularize patch-level relations by con-
trastive constraints, which is implemented in two ways:
Receptive-Field-based PDCR and Hierarchical PDCR.

• Uncertainty-aware feature re-weighting (UAFR) module
is designed to avoid the learning-attention shift problem
in MIS, which is caused by minority features with high
uncertainty due to the characteristics of medical images,
and select a better feature.

• State-of-the-art results have been achieved across 8 di-
verse datasets from 6 domains. Furthermore, we sub-
stantiate the potential applicability of proposed methods
under a limited data scenario by utilizing only 25% data
to outperform the baseline methods with full data.

II. RELATED WORK

A. Architectures for Medical Image Segmentation

A vast of neural networks have been designed and tuned
for MIS. Despite the unique design of each architecture, most
of the networks employ an encoder-decoder structure with
the bypass connection to fuse low-level features with high-
level features. Among those designs, FCN [15], UNet [16]
and DeepLab [17] function as three milestones. They and
their variations provide a stable and consistent baseline for
segmentation tasks. Recently, some other methods are pro-
posed [2], [18]–[21]. A structure boundary preserving segmen-
tation framework is proposed in [2] to tackle the ambiguity of
boundary. A difficulty-aware deep segmentation network [19]
with confidence learning is introduced to obtain more region-
wise confidence information.

For 3D MIS, nnUNet [22] shows that network modifica-
tion may be inferior compared to searching suitable hyper-
parameters including augmentations, pre-processing and post-
processing techniques, etc. Its pipeline and code-base provide
a strong baseline for a broad scope of tasks. [23] proposes
global and local contrastive loss for volumetric medical images
in the semi-supervised setting, but it still maintains the rigid
bipartition for the relationship between patches.

B. Contrastive Learning

Contrastive learning-based model pre-training has largely
bridged the gap between supervised and unsupervised model
pretraining [3]–[8], [24] by learning to discriminate positive
pairs against negative pairs. SimCLR [5] demonstrates the
importance of augmentations and shows it is beneficial to
maintain a large number of negative pairs and introduce the
projection neck. Moco [4] on the other hand, utilizes the mem-
ory bank to eliminate the limitation caused by the batch size.
Besides, contrastive learning is also utilized for supervised
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scenarios [11], [25]. For supervised classification, [11] extends
the definition of “negative pair” from inter-image to inter-
category.

Besides backbone pre-training, efforts have also been made
to fit CL into segmentation tasks. Most methods target at semi-
supervised and unsupervised scenarios. A pixel-wise con-
trastive loss is proposed in [26] for segmentation pretraining
and exploring advantages gained under the semi-supervised
scenario. To work with meta-label annotations, [12] adapts
CL even when no additional unlabeled data is available.

C. Uncertainty-guided segmentation
Several uncertainty-based methodologies are introduced for

image segmentation [27]–[32]. According to [27], uncertainty
can be divided into two branches in deep learning, aleatoric
uncertainty, which is caused by data itself and often occurred
in boundaries of objects, and epistemic uncertainty, which
is attributed to limited data and insufficient model training.
BEP [32] proposes location-adaptive weighting mechanism
for semantics-aware feature pooling, which achieves improve-
ments in both image semantic segmentation and classification
tasks. For medical image segmentation, [28] quantifies
epistemic uncertainty by running a given sample through
the model several times with the dropout layers. A novel
uncertainty-aware scheme is designed in [30] to enable the
model to gradually learn from the meaningful and reliable
targets by exploiting the uncertainty information. In [31],
common voxel-wise uncertainty which measures with respect
to their reliability in medical image is evaluated.
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Fig. 1: An overview of proposed method. PDCR de-
notes patch-dragsaw contrastive regularization. UAFR denotes
uncertainty-aware feature re-weighting. They can be inserted
at both encoder and decoder.

III. PATCH-DRAGSAW CONTRASTIVE REGULARIZATION

In this section, we first give a brief introduction to self-
supervised contrastive learning. Then, we introduce the pro-
posed RF-PDCR and H-PDCR.

A. A Review of Self-Supervised Contrastive learning
The existing self-supervised contrastive learning framework

generally uses image as the component of pair and defines their
relationship as rigid. It contains three principle components:
(i) a transformation collection T (ii) an encoder network E(·)
to encode high-dimensional inputs. (iii) a projection head P (·)
to further introduce non-linearity and reduce the dimension of
output embeddings. As in [5], a positive pair (x̃i, x̃j(i)) is
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Fig. 2: Receptive-Field-based Patch-Dragsaw Contrastive Reg-
ularization (RF-PDCR). According to the concept of receptive
field, each feature vector in a certain layer vi corresponds to
a local patch pi in the image. Given (vi, vj), (pi, pj) form
the pair. wij is the affinity score of pi and pj . pd(·) calculate
the contrastive loss.

acquired by applying randomly sampled augmentations t ∼ T
of the same image x twice. Since (x̃i, x̃j(i)) and (x̃j(i), x̃i)
are treated as two pairs, a minibatch with size Nb will attribute
to 2Nb pairs for training. The contrastive loss is:

Lbatch =

2Nb∑
i=1

Li (1)

Li = − log
exp (sim(zi, zj(i))/τ)∑2N

k=1 1[k 6=i] exp(sim(zi, zk))/τ)
(2)

where zi = P (E(x̃i)), 1[k 6=i] ∈ {0, 1} returns 1 iff k 6= i and
sim(·) denotes the cosine similarity.

B. Receptive-Field-based Patch-Dragsaw Contrastive
Regularization

In this work, we utilize local patches as the component of
pair and define a soft relationship between different patches.
Two ways are adopted to generate the representation of the
patch, RF-PDCR and H-PDCR. RF-PDCR is first introduced,
as shown in Fig. 2. We first describe how to generate the
representation for each patch, then the relationship between
patches is introduced. After that, we illustrate the complete
algorithm.

1) Component for pair and its representation: According
to [14], each feature vector from a certain layer corresponds
to a local patch. Denote the feature vector in layer l as vi,
its corresponding patch is denoted as pi. For simplicity, we
drop the layer “l” in the notation, since RF-PDCR conducts
on feature vectors from the same layer. Here, to utilize the
location information, we encode the position of each patch
by concatenating its coordinate (min-x-coordinate, max-x-
coordinate, min-y-coordinate, max-y-coordinate) to its feature.
Meanwhile, for every layer, we utilize Grid-sampling strategy
to select N vectors from its feature.

2) Relationship for pair: We define the affinity score to
measure the soft similarity of every two patches in a pair.
Firstly, the foreground ratio vector is obtained to measure the
characteristic of each patch, which contains the ratios between
the area of each class and the area of the whole patch. Based
on the foreground ratio, the affinity score could be calculated.
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Specifically, given (vi,vj), which contains the location
information of its corresponding patch, (pi,pj) form the pair.
The affinity score wij ∈ [0, 1] is a scalar that measures to
what extent should this pair be pulling and pushing for the
contrastive loss. Denote the receptive field of vi as Ri. wij is:

wij = aff(pi,pj) = 1− 1

M

M∑
m=1

|φmi − φmj | (3)

where M denotes the number of classes and φmi is the
foreground ratio of class m for pi. φ

m
i measures the area ratio

between class m and the total area of pi. The more similar
the value of φmi and φmj , the greater the value of wij . φmi is:

φmi =
Number of pixels in Ri which belongs to class m

Area of receptive field Ri
(4)

Specifically, φmi is computed as following. Suppose vi is
sampled from layer l. The receptive field Ri is a square, and
its side length is denoted as ri. The position of Ri is calculated
as follows. Let ol and el denote the start and end location of
vi. In our case ol = el + 1, meaning sample one vector each
time. In each axis (x-axis and y-axis), the start o and end e
positions of the receptive field Ri in the original image take
the following forms, according to [14], [33]:

o = ol

l∏
t=1

st −
l∑

z=1

pz

z−1∏
t=1

st (5)

e = el

l∏
t=1

st −
l∑

z=1

(1 + pz − kz)
z−1∏
t=1

st (6)

where kz denotes the kernel size, st represents the stride size
and pz is the padding size of a convolutional layer.

On the other hand, the side length of Ri denoted as ri ,
computed as the following form:

ri =

l∑
z=1

(
(kz − 1)

z−1∏
t=1

st

)
+ 1 (7)

where kz and st denote the kernel size and the stride size of
a convolutional layer, respectively. Meanwhile, ri = o−e+1.
Thus, a feature vector corresponds to a local patch with a
specific location and size. Note that the size of the receptive
field ri only depends on layer l, not related to specific vectors.
The area of Ri equals ri2, which is the denominator in Eq. (4).
Given the locations of vector vi in the hidden feature, we can
calculate the location of Ri in the original image according
to Eq. (5) and Eq. (6). With the calculated location of Ri, the
number of pixels that belong to each class m in Ri can be
computed according to the image annotation G, which is the
numerator in Eq. (4).

3) The Algorithm of RF-PDCR: Algorithm 1 summarizes the
Receptive-Field-based Patch-dragsaw. Specifically, it takes
the following formation:

sij = sim(vi,vj) =
(vi)

Tvj
‖vi‖ ‖vj‖

(8)

L =

L∑
l=1

N∑
i=1

N∑
j=1

− log
exp([sij · wij ]/τ)∑N

n=1 exp([sin · (1− win)]/τ)
(9)

where sij denotes the cosine similarity of vi and vj , l denotes
the layer and L denotes the number of layers. (1 − wij)
measures the dissimilarity.

Algorithm 1 Receptive-field-based Patch-Dragsaw.
Input: encoder E(·), constant N and
τ

1: for image I , annotation G in dataset do
2: for layer l ∈ {1, ..., L} in encoder do
3: sampling {v1, ...,vi, ...,vj , ...,vN}

# just conduct CL within single layer
4: calculate receptive field according to Eq. (7)
5: encode the location information of each patch
6: for i ∈ {1, ..., N} do
7: for j ∈ {1, ..., N} do
8: compute the foreground ratio of each class for

each patch with Eq. (4)
9: compute wij with Eq. (3)

10: compute sij with Eq. (8)
11: end for
12: end for
13: end for
14: compute the loss L with Eq. (9)
15: update network E to minimize L
16: end for

C. Hierarchical Patch-Dragsaw Contrastive
Regularization

Despite the simplicity of RF-PDCR, it has two limitations:
1) hard to be conducted in architectures of the network other
than the encoder, due to the applicability of the receptive field
concept; 2) difficult to be conducted among features from
multi-level, due to the different size of patches corresponding
to different levels of features. Thus, to improve the implemen-
tation generalization and for better representation learning, we
introduce hierarchical patch-dragsaw contrastive regularization
(H-PDCR), as illustrated in Fig. 3.

1) Component for pair and its representation: According
to [34], each vector from the hidden feature of a certain layer
corresponds to a specific location in the original image. Then,
a hierarchical patch series with this location as the center and
different sizes would be obtained, where the sizes are manually
assigned. Denote the ith feature vector from layer l as vli, it is
associated with a hierarchical patch series pli, in which the kth
patch is denoted as pli(k). Same with RF-PDCR, the location
information of each patch would be encoded, and the grid-
sampling strategy will be also conducted.

2) Relationship for pair: In H-PDCR, CL is conducted
among features from single-level and multi-level. The com-
putation of affinity score w still follows Eq. (3), but with two
kinds of notations:
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Fig. 3: Hierarchical Patch-Dragsaw Contrastive Regularization
(H-PDCR). Each feature vector in a certain layer vli corre-
sponds to a patch series pli, in which the kth patch is denoted
as pli(k). Given (vli, v

l
j), (pli(k), p

l
j(k)) form the pair, since

their size are similar, which could benefits the contrastive
learning. wlij is the affinity score of pli(k) and plj(k). Similarly
for vli and vl

′

j from different layers, (pli(k), p
l′

j (k)) form the
pair. wl↔l

′

ij is the affinity score of the pair. pds(·) calculate
single layer contrastive loss for a pair. pdc(·) calculate cross
layer contrastive loss for a pair.

i. patches from same layer (layer l):
Given (vli,v

l
j), p

l
i(k) and plj(k) form the pair, since their

size is similar, which could benefit the contrastive learning.
wlij(k) = aff (pli(k), p

l
j(k)) is the affinity score of this pair.

ii. patches from different layers (layer l and layer l′):
Given (vli,v

l′

j ), p
l
i(k) and pl

′

j (k) form the pair.
Note that before conducting the contrastive learning across

different layers, the channel of the two features will be
normalized to 32 by a 1 × 1 conv layer, to ensure that vli
(1 × 32) and vlj (1 × 32) has the same size.
wl↔l

′

ij (k) = aff (pli(k), p
l′

j (k)) denotes the affinity score.
3) The Algorithm of H-PDCR: Algorithm 2 summarizes the

Hierarchical Patch-dragsaw contrastive loss. It is:

slij = sim(vli,v
l
j) =

(vli)
Tvlj∥∥vli∥∥∥∥vlj∥∥ (10)

sl↔l
′

ij = sim(vli,v
l′

j ) =
(vli)

Tvl
′

j∥∥vli∥∥∥∥vl′j ∥∥ (11)

L =
∑L
l=1

∑N
i=1

∑N
j=1

∑P
k=1− log

exp([slij ·w
l
ij(k)]/τ)∑N

n=1 exp([s
l
in·(1−wl

in(k))]/τ)

+
∑L−1
l=1

∑L
l′=l+1

∑N
i=1

∑N
j=1

∑P
k=1− log

exp([sl↔l′
ij ·wl↔l′

ij (k)]/τ)∑N
n=1 exp([s

l↔l′
in ·(1−wl↔l′

in (k))]/τ)

(12)
where l and l′ denotes the layer, P is the number of patches in
the patch series. vl

i is the ith vector from layer l. (1−wlij(k))
and (1 - wl↔l

′

ij (k)) measure the dissimilarity.

IV. UNCERTAINTY-AWARE FEATURE RE-WEIGHTING

This module serves as a better feature re-weighting. As
shown in Fig. 4, it generates an uncertainty-aware map,
models the uncertainty for each element, and then highlights
pixels with low uncertainty while suppressing those with high
uncertainty.

Algorithm 2 Hierarchical Patch-Dragsaw.
Input: encoder E(·), decoder D(·), constant N and
τ

1: for image I , annotation G in dataset do
2: for layer l ∈ {1, ..., L} do
3: sampling {vl1, ...,vli, ...,vlj , ...,vlN}

# CL within single layer
4: calculate the center location in the image for each v

and generate patch series
5: encode the location information of each patch
6: for i ∈ {1, ..., N} do
7: for j ∈ {1, ..., N} do
8: for k ∈ {1, ..., P} do
9: # for each patch in patch series

10: compute the foreground ratio of each class for
each patch by Eq. (4)

11: compute wlij(k) by referencing Eq. (3)
12: compute slij with Eq. (10)
13: end for
14: end for
15: for vector {vl′1 , ...,vl

′

N} in layer l′ (l 6=l′) do
16: # CL across different layers
17: for j ∈ {1, ..., N} do
18: for k ∈ {1, ..., P} do
19: normalize vli and vl

′

j to the same size
20: compute the foreground ratio of each class

for each patch by Eq. (4)
21: compute wl↔l

′

ij (k) for each patch by Eq. (3)
22: compute sl↔l

′

ij with Eq. (11)
23: end for
24: end for
25: end for
26: end for

# summation of single layer loss and cross layer loss
27: end for
28: compute the loss L with Eq. (12)
29: update network E to minimize L
30: end for

Given a hidden feature Q ∈ RH×W×C . Three steps are
taken to build the proposed module. Firstly, Q will go through
a learning function F(·) for further representation learning,
and generates A ∈ RH×W×M :

A = softmax(F(Q)) (13)

Here, F(·) is a 3 × 3 conv layer followed by an identity
conv layer. Relu activation function and batch-normalization
are used in between.

The uncertainty uij for each location aij ∈ R1×M in A is
modeled according to normalized Shannon-entropy [35]:

uij = −
M∑
m

amij log2(a
m
ij )

log2(M)
. (14)

Finally the uncertainty-aware feature map Û ∈ RH×W is
acquired and imposed back to the hidden feature:
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Fig. 4: Uncertainty-Aware Feature Re-weighting (UAFR).
F(·) performs segmentation at specific scale and Entropy(·)
represents softmax function followed by Shannon-entropy
across channels.

Û = 1− U, Q̂ = Q ∗ (1 + Û) (15)

where “*” denotes element-wise multiplication. The new hid-
den feature Q̂ is then passed to the following layers instead
of the original one Q.

V. EXPERIMENTS

A. Datasets and Implementation Details
To better evaluate the generalization on a broad scope of

medical image segmentation tasks, we conduct experiments
on both 2D and 3D datasets, including eight datasets across
six domains in total. Table I elaborates task details. The
performance is measured by the Jaccard index (JA), Dice
coefficient (DI), and pixel-wise accuracy (AC).

We utilize DeeplabV3+ [17] (2D) and nnUNet [22] (3D) as
the baseline architecture. To supervise the segmentation task,
we utilize cross-entropy loss. If PDCR is used, we add it as
a regularization to cross-entropy loss with a weight of 0.01.
H-PDCR is equipped at encoder, decoder and cross-layers

according to the ablation study. UAFR, is added to all encoder
and decoder layers (except the neck module in DeeplabV3+).
N is set to 128, 64, 32, 8, 8, 8, 8, 8 for each layer. P is
set to 3, the size of patches in patch series of H-PDCR is
set to 5 × 5, 7 × 7 and 9 × 9. Other hyper-parameters like
learning rate scheduler, augmentation strategy, etc, are kept
the same across all 2D or 3D tasks. For 2D tasks, we utilize
the Adam optimizer with the base learning rate of 0.001 and
the cosine scheduler. The weight decay is set to 0.00001.
Applied augmentation includes scale, flip, rotate, shift, and
shear transformation. Specifically, we conduct random scaling
between 0.8 and 1.2, random rotation from -90 to 90 degrees,
shear from -20 to 20 degrees, shift with 0.1, and random flips
for both axes. As for training, the input image is resized to 512
× 512 and batch size is set to 64 on 16 NVIDIA GTX 1080Ti
GPUs. We train each model for 300 epochs. For 3D tasks,
we follow the settings of [57], [59], and the hyper-parameters
follow the default settings of nnUNet. Specifically, the input
images are first resampled to have an isotropic voxel spacing
of 0.7mm × 0.7mm × 0.7mm, followed by z-normalization
separately applied to each input channel. In the training phase,
each image is randomly cropped to the region of nonzero

values with the pre-defined resolution. For testing, the final
segmentation results are obtained by combining patch-based
inference results with a 50 percent overlap. The input size
of each patch is modified for each task like nnUNet. We
utilize the same data augmentation strategy as [57] in both
the training phase and testing phase.

B. Benchmark Studies
Table II shows the results for the proposed model against

other state-of-the-art methods for the aforementioned medical
image segmentation tasks. It is encouraging to see that our
model, with a task-agnostic design, achieves a consistent
advantage over other task-tailored counterparts. We believe
it is evidence that our proposed method exhibits universal
applicability for the medical image segmentation research area.

Besides, we conduct t-tests and calculate the standard devi-
ation on each dataset against methods ranked second and third.
Shown in Table III, the results confirm that the improvement
against other methods is statistically significant.
C. Ablation Studies

We conduct ablation studies on the ISIC 2016 dataset using
DeeplabV3+ with xception encoder as the backbone network.
The dataset is chosen for a balance of dataset size and training
budget.

1) Effect of the proposed two modules and computation
complexity analysis: In this subsection, we investigate whether
the proposed two modules are beneficial on top of different
architectures on ISIC 2016 dataset. To this end, we add
either or both of the two modules to FCN, UNet, in addi-
tion to DeeplabV3+, which are arguably the most common
segmentation frameworks among others. Table IV shows the
results. Two observations are worth noting: Firstly, both PDCR
(including RF-PDCR and H-PDCR) and UAFR demonstrate
consistent improvements on all of the three backbones, indi-
cating the general applicability; Secondly, the two modules
are complementary in the sense that they are shown to benefit
on top of each other. Besides, we compare the number of
parameters and FLOPs in 512×384 input size for inference
on several existing methods, as shown in Table IV. Note that
PDCR is only involved in training, and UAFR is a lightweight
module.

2) Ablation Study for PDCR: We adopt PDCR and its varia-
tions on the backbone to investigate its best configuration.

1. The best configuration. According to Section III, RF-
PDCR is only used to encoder layers for the applicability of the
receptive field concept, meanwhile H-PDCR could be extended
to all the layers in each part of the network. We investigate
where should PDCR be plugged in, by taking the last layer
of each block as well as every single layer as candidate sites
and ablating PDCR layer-by-layer.

Fig. 5 shows the ablation results for RF-PDCR. It can be
clearly seen that if RF-PDCR is adopted in a single layer,
the performance will be improved no matter adopted in which
layer. However, when adopting RF-PDCR in multiple layers
simultaneously, we notice that adopting in layer 2,3,4 of the
encoder performs the best.
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TABLE I: Details of tasks and datasets used in experiments.

Dataset Domain Task Number of category Dimension Modality Evaluation Protocol

ISIC 2016 [36]+PH2 [37] Skin Lesion seg 2 2D Dermoscopy 900 train(ISIC2016), 200 test(PH2) (Official split)
ISIC 2016 [36] Skin Lesion seg 2 2D Dermoscopy 900 train, 379 test (Official split)
ISIC 2017 [38] Skin Lesion seg 2 2D Dermoscopy 2000 train, 600 test (Official split)

MC [39] Lung Lung seg 2 2D X-Ray 80 train, 58 test
DigestPath [40] Pathology Lesion seg 2 2D Pathology 952 train, 5-fold cross-validation

Decathlon [41]-Task01 Brain Tumour seg 4 3D MRI 454 train, 5-fold cross-validation (Official split)
Decathlon [41]-Task02 Heart Heart seg 2 3D MRI 20 train, 5-fold cross-validation (Official split)
Decathlon [41]-Task05 Prostate Prostate seg 3 3D MRI 32 train, 5-fold cross-validation (Official split)

TABLE II: Results of the proposed model against state-of-the-art methods on a broad scope of medical image segmentation
tasks.

ISIC 2016+PH2 (Skin) ISIC 2016 (Skin) ISIC 2017 (Skin) MC (Lung)

Methods DI JA Methods DI JA AC Methods DI JA AC Methods JA AC

MSCA [42] 81.57 72.33 DFCN [43] 91.20 84.70 95.50 FCN+SSP [44] 85.7 77.3 93.8 FCN [15] 90.53 97.35
SSLS [45] 78.38 68.16 MSFCN [46] 91.18 84.64 95.51 Bi et al. [47] 85.66 77.73 94.08 UNet [16] 91.64 97.82
FCN [15] 89.40 82.15 ECDN [48] 91.30 84.90 95.70 SLSDeep [49] 87.8 78.2 93.6 M-Net [50] 91.95 97.96
Bi et al. [46] 90.66 83.99 Bi et al. [47] 91.77 85.92 95.78 MBDCNN [51] 87.8 80.4 94.7 Multi-task [52] 92.24 98.13
SBPS [2] 91.84 84.30 biDFL [53] 93.33 88.12 96.75 biDFL [53] 88.54 81.47 94.65 ETNet [54] 94.20 98.65
Ours 93.51 86.74 Ours 94.51 88.94 97.71 Ours 89.63 82.00 95.64 Ours 95.30 99.68

DigestPath (Pathology) Decathlon

Brain Tumor Heart Prostate

Methods DI JA AC Methods ED NE EN Avg LA PE TR Avg

FCN [15] 77.98 64.07 94.32 U-ResNet [55] 79.10 58.38 77.37 71.61 91.48 48.37 79.17 63.77
UNet [16] 77.33 63.17 94.29 nnUNet NoDA [22] 81.27 60.92 77.90 73.36 92.85 58.61 83.61 71.11
Dilated-Net [56] 77.34 63.45 94.27 nnUNet [22] 81.68 61.29 77.97 73.65 93.21 63.14 86.53 74.84
DeeplabV3+ [17] 77.92 63.88 94.33 SCNAS [57] 80.41 59.85 78.50 72.92 91.91 53.81 82.02 67.92
- - - - ASNG [58] 81.94 61.85 79.35 74.38 93.27 67.65 87.04 77.35
Ours 79.44 65.42 95.78 Ours 83.15 65.82 85.09 78.02 94.38 68.83 88.61 78.72

TABLE III: Standard deviation and t-test against other methods.
The improvement is statistically significant.

Dataset Method (Ours vs ) t-value p-value Significant
at p <0.05?

Standard
deviation

PH2 SBPS (rank2) 2.172(DI) 0.0161(DI) Yes 0.0003Bi et al. (rank3) 5.053(DI) p<0.00001(DI) Yes

ISIC2016 biDFL (rank2) 2.620(DI) 0.0087(DI) Yes 0.0002Bi et al. (rank3) 6.459(DI) p<0.0000(DI) Yes

ISIC2017 biDFL ( rank2) 1.983(DI) 0.047(DI) Yes 0.0002MBDCNN (rank3) 2.787(DI) 0.004(DI) Yes

MC ETNet (rank2) 6.179(AC) p<0.0001(AC) Yes 0.0004Multi-task (rank3) 9.362(AC) p<0.0001(AC) Yes

DigestPath DeeplabV3+ (rank2) 4.1388(DI) p<0.0001(DI) Yes 0.0045Dilated-Net (rank3) 5.7181(DI) p<0.0001(DI) Yes
Decathlon

(Brain Tumour)
ASNG (rank2) 3.3401(DI, Avg) 0.0009(DI, Avg) Yes 0.0019SCNAS (rank3) 4.6798(DI, Avg) p<0.0001(DI, Avg) Yes

Decathlon
(Heart)

ASNG (rank2) 3.0085(DI) 0.0072(DI) Yes 0.0027SCNAS (rank3) 6.6946(DI) p<0.0001(DI) Yes
Decathlon
(Prostate)

ASNG (rank2) 2.7813(DI, Avg) 0.0091(DI, Avg) Yes 0.0032SCNAS (rank3) 21.9253(DI, Avg) p<0.0001(DI, Avg) Yes

On this basis, we contrast H-PDCR with RF-PDCR. We
conduct experiments in two aspects: investigate the impact
of H-PDCR in each part of DeeplabV3+, including encoder,
decoder and cross-layer; compare the performance of H-
PDCR and RF-PDCR in the encoder (RF-PDCR could only
be adopted in the encoder due to its applicability). The results
are shown in Table VI. In Table VI (a), the results indicate
that adopting manually assigned patches for H-PDCR in all
parts of the network could improve the results. Besides, in
Table VI (b), while adopting H-PDCR in the decoder and
cross-layer, for the encoder, we investigate whether adopting
receptive-field patch (RF-PDCR) or manually assigned patches
(H-PDCR) performs better. The results show that manually as-
signed patch (H-PDCR) performs better, proving that H-PDCR
could take more advantage of the multi-scale information and

TABLE IV: Results of ablation studies for different architec-
tures on ISIC 2016 and comparison of computation complex-
ity. A strong and consistent improvement is proved. Besides,
both two modules could be implemented in a “lightweight
plugin” fashion, which only brings few extra parameters.

Architecture Parameters FLOPs +RF-PDCR +H-PDCR +UAFR JA DI AC

UNet 17.3M 120.4G 78.81 86.15 92.05
UNet 17.3M 120.4G X 80.04 87.42 92.86
UNet 17.3M 120.4G X 80.52 87.94 93.14
UNet 18.8M 128.0G X 80.02 87.17 93.20
UNet 18.8M 128.0G X X 81.31 88.34 94.16

FCN 18.6M 76.5G 80.42 86.46 92.30
FCN 18.6M 76.5G X 81.55 87.83 93.65
FCN 18.6M 76.5G X 82.37 88.56 94.50
FCN 19.2M 78.3G X 82.04 88.32 94.67
FCN 19.2M 78.3G X X 83.13 89.54 95.51

DeeplabV3+ 54.7M 62.7G 86.09 91.17 95.41
DeeplabV3+ 54.7M 62.7G X 86.52 92.24 96.17
DeeplabV3+ 54.7M 62.7G X 87.99 93.45 97.01
DeeplabV3+ 55.5M 64.1G X 87.81 93.50 96.79
DeeplabV3+(Ours) 55.5M 64.1G X X 88.94 94.51 97.71

facilitate the network.
On the other hand, we investigate the specific configuration

of H-PDCR by adopting it on every single layer. The results
are shown in Table VII, indicating that adopting H-PDCR on
adjacent level of layers could boost the performance more,
which is better than adopting on layers with large spans. The
best setting for H-PDCR is adopted in single layer (2,3,4 of the
encoder) and across features from different layers (layer 2 and
3 of the encoder). In summary: it is suggested to adopt RF-
PDCR at central layers of the network, where the receptive
field is neither too large nor too small. Similarly with H-
PDCR. Besides, H-PDCR could be extended to decoder
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and cross-layer.

Fig. 5: Ablation study for PDCR on ISIC 2016. We ablate
from two aspects: the effect of PDCR in each layer and
whether PDCR is better than other similar designs. The red
line denotes adding PDCR at each layer in the encoder. The
orange, green and purple lines denote adopting three similar
designs of affinity score w layer-wisely. The blue dot line
denotes using the baseline model and the red dot line denotes
the best usage of PDCR. The results show that PDCR is
effective for every layer, and performs the best when adding
to layer 2,3 and 4. Besides, PDCR outperforms other similar
designs.

2. Design variations. We ablate other similar designs for
PDCR:
(1) Variations for foreground ratio φ in PDCR. Instead of
Eq. (4), we evaluate two other definitions of φ for each patch:
L1-norm and L2-norm. The results are shown in Table V (a),
which prove that our definition performs better.
(2) Variations for affinity score w in PDCR. Here, we
substantiate 3 variations listed as following:
• Constant w: downgrades w to a constant temperature

coefficient for each two patches (w = 0.5).
• Rigid bipartite w: setting each two patches as rigid

positive or negative pairs like in SimCLR, which indicates
that w = 1 when a patch with its transformation and
w = 0 for each two different patches. Note that the
transformation here means the data augmentation, which
includes scale, flip, rotate, shift, and shear transformation
and keeps the same with all the other experiments in
Section V A.

• Center-location-based w: w = 1 when the label of the
center location of two vectors are the same, 0 otherwise.

According to the results shown in Fig. 5, our design of w
outperforms the other three variations.
(3) Variations of two implementations for H-PDCR. There
are two different implementations for H-PDCR, the first one
is to calculate the contrastive loss for each patch pair in the
series first, then average the loss, as mentioned in Eq. (9)
of Section III. The second one is to calculate the average
of foreground ratios for the patches in a series first, then
conduct contrastive learning. We evaluate the impact of these
two implementations. The results are shown in Table V (b),
which reveals that the first one performs better.

(4) The impact of patch position encoding. We evaluate
the impact of encoding the the location information of each
patch(mentioned in Section III B 1). The results are shown
in Table V (c), indicating that the location information would
benefit the model.
(5) The variations of measuring the affinity score of
patches. We evaluate two ways to measure the similarity of
patches in Eq. (3). The first way is utilizing foreground ratio
(Eq. (3)). The second way is to use the dice similarity of
each two patches in the segmentation mask to replace the
foreground ratio, which makes Eq. (3) as follows:

wij = aff(pi,pj) = 1− 1

M

M∑
m=1

dice(pmi ,p
m
j ) (16)

The results are shown in Table V (d), indicating that the first
way performs better. We think this is because the second way
relies too much on the location of the foreground (lesion) area.
For example, if the two patches have a similar foreground ratio
but their foreground area is in a totally different location, the
first way tends to regard these two patches as more similar
ones. However, the second way will regard them as totally
dissimilar patches. This may hurt the performance.
(6) Comparison with other similar-designed SOTA meth-
ods. In Table V (e), we compare with three image-level con-
trastive learning methods, including BYOL [6], SimCLR [5],
SimSiam [9] on ISIC 2016. They are first used to pre-train the
model on ISIC 2016 dataset in a self-supervised fashion, then
fine-tuned supervisely. Our method outperforms all of them.

3) Ablation Study for UAFR: Similarly to PDCR, we adopt
UAFR and its variations on the backbone to investigate its best
configuration.

1. The best configuration. We investigate the configuration
of UAFR by adopting it in every single layer of DeepLabV3+.
As illustrated in Fig. 6, UAFR is more robust against the
plugged-in position and performs roughly at both encoder
and decoder. We do not add it at aspp neck(“Atrous Spatial
Pyramid Pooling”) in DeeplabV3+ framework since it is the
concatenation of multiple conv layers. Similarly, the benefits
are additive and we finally add them to all layers in the encoder
and decoder. To summarize: it is suggested to adopt UAFR
at any layer you like in the encoder and decoder.

2. Design Variations. We ablate other similar designs for
UAFR:

(1) Comparison with other similar-designed methods.
We compare UAFR with two uncertainty-based methods,
including Active FCN [28], UAMT [30] and two popular
attention mechanisms, including SENet [60] and CBAM [61],
to see the changes brought to the performance. As seen in
Fig. 6 and Table VIII, UAFR outperforms four counterparts
by a large margin. It is believed that improvements are
gained from regions with ambiguous boundaries region as
well as heterogeneous textures. Visualization from Fig. 9 also
substantiates our intuition.

(2) The impact of different variation for F(·). We
conduct experiments to evaluate the effect of F(·), including
two aspects: whether adopting F(·) before uncertainty mea-
suring; the impact of different output channel size (M ). In
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TABLE V: Results of similar designs for PDCR on ISIC 2016. (a) investigates several variations for foreground ratio φ. (b)
investigates two implementations for H-PDCR. (c) investigates the impact of patch position encoding. (d) compares our method
to a variation of measuring the affinity score of patches. (e) compares our method to other similar-designed contrastive learning
methods. Our method outperforms other similar designs.

(a)

Foreground ratio φ RF-PDCR H-PDCR JA DI AC

L1-norm X 87.89 93.45 96.87
L1-norm X 88.43 94.18 97.25
L2-norm X 87.52 93.01 96.19
L2-norm X 88.04 93.68 96.99
Ours X 88.24 93.97 97.21
Ours X 88.94 94.51 97.71

(b)

Method Calculating foreground ratio for H-PDCR JA DI AC

Ours Average the foreground
ratio of patches first 88.75 94.31 97.69

Ours Calculate the loss of
each size of patches first 88.94 94.51 97.71

(c)

Method With or without patch position encoding JA DI AC

Ours Without patch position encoding 88.85 94.40 97.67
Ours With patch position encoding 88.94 94.51 97.71 (d)

Method Measuring the affinity score of patches JA DI AC

Ours Dice similarity metric 88.61 94.08 97.22
Ours Foreground ratio 88.94 94.51 97.71

(e)

CL Method The level of the component for CL JA DI AC

BYOL Image-level contrastive learning 86.78 92.75 96.56
SimCLR Image-level contrastive learning 86.88 93.01 96.75
SimSiam Image-level contrastive learning 87.11 93.14 96.41

Our proposed Patch-level contrastive learning 88.94 94.51 97.71

TABLE VI: Results of contrasting H-PDCR with RF-PDCR.
(a) investigates the impact of H-PDCR by adopting it in all
parts of DeeplabV3+, including encoder, decoder and cross-
layer. (b) compares the performance of H-PDCR and RF-
PDCR in the encoder. H-PDCR performs better.

(a)

ISIC2016 RF-PDCR
(encoder)

H-PDCR
(encoder)

H-PDCR
(decoder)

H-PDCR
(cross-layer) JA DI AC

DeeplabV3+ X 87.20 92.46 96.18
DeeplabV3+ X 87.29 92.81 96.22
DeeplabV3+ X 86.70 92.31 96.32
DeeplabV3+ X 87.00 92.65 96.30
DeeplabV3+ X X 87.30 93.16 96.61
DeeplabV3+ X X 87.38 93.23 96.62
DeeplabV3+ X X 87.03 92.84 96.54
DeeplabV3+ X X X 87.99 93.45 97.01

(b)

ISIC2016 RF-PDCR
(encoder)

H-PDCR
(encoder)

H-PDCR
(decoder)

H-PDCR
(cross-layer) JA DI AC

DeeplabV3+ X X X 87.99 93.45 97.01
DeeplabV3+ X X X 87.83 93.33 96.99

Table IX (a), the results show that F(·) could effectively learn
the semantic information of Q and facilitate the following
uncertainty measuring. In Table IX (b), the results show that
when M equals 2, which is the segmentation class number,
the performance is the best. And when M is close to 2,
the performance is also close to which of M=2. But, when
M is bigger than 100, the performance drops dramatically.
These results show that without supervision, the uncertainty
measurement does not demand the channel number to be
exactly the same as the segmentation class number, it could be
calculated with an arbitrary number of channel. But, when the
channel number is close to the segmentation class number, the
performance would be better, indicating that the network does
learn better feature by measuring the uncertainty according to
the information of each class.

(3) convolutional kernel size of F(·).
We conduct experiments to evaluate the effect of different

convolutional kernel sizes for F(·). The results are shown in
Table X, which indicates that 3 × 3 is the best setting.

D. On Limited Training Data
Both our PDCR and UAFR are designed for robust and

effective performance with limited trainset sizes. In this

TABLE VII: Results of the configuration for H-PDCR on ISIC
2016, which includes the performance of several layers and
the combination of them. The best setting for H-PDCR is
adopted in single layer (2,3,4 of the encoder) and across
features from different layers (layer 2 and 3 of the encoder).
Besides, adopting H-PDCR on layers with large spans will
hurt the performance.

ISIC2016 H-PDCR
(encoder layer 1)

H-PDCR
(encoder layer 2)

H-PDCR
(encoder layer 3)

H-PDCR
(encoder layer 4)

H-PDCR
(encoder layer 5) JA DI AC

DeeplabV3+ 86.09 91.17 95.41
DeeplabV3+ X X 87.00 92.66 96.38
DeeplabV3+ X X 86.98 92.64 96.37
DeeplabV3+ X X X 87.07 92.71 96.43
DeeplabV3+ X X X 87.05 92.73 96.40
DeeplabV3+ X X X 87.11 92.76 96.44
DeeplabV3+ X X X X 87.18 92.79 96.46
DeeplabV3+ X X X X X 87.19 92.80 96.46
DeeplabV3+ X X X 87.29 93.09 96.52

DeeplabV3+ H-PDCR (cross
encoder layer 1 and 4)

H-PDCR (cross
encoder layer 2 and 3) JA DI AC

DeeplabV3+ X 86.50 91.93 96.01
DeeplabV3+ X 87.00 92.65 96.30
DeeplabV3+ encoder layer 2 & encoder layer 3 & encoder layer 4 & cross encoder layer 2 and 3 87.99 93.45 97.01

TABLE VIII: Results of other similar-designed methods for
UAFR on ISIC 2016. Our method performs the best.

Architecture Method Type JA DI AC

Our proposed Uncertainty-based learning 88.94 94.51 97.71
Active FCN Uncertainty-based learning 85.01 91.32 95.89
UAMT Uncertainty-based learning 85.47 91.53 95.70
CBAM Attention-based 86.48 92.66 96.45
SENet Attention-based 86.56 92.77 96.23

subsection, we explore the robustness of proposed methods
against the data reduction on ISIC 2016 dataset. Specifically,
we gradually decrease the amount of training data from 50%
of the whole set to 1% with a stride of 5% and see the
performance changes along the way. The results are shown
in Fig. 7. It is encouraging to see that the performance is less
affected by the data size in a broad range from 25% to 100%.
Noticeably, the model still performs on par with the whole-set
baseline with as little as 20% of overall training data. This
property reveals the great potential of proposed methods in
handling other especially long-tailed domains where purely
big-data-driven methods may not be applicable.
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Fig. 6: Ablation study for UAFR on ISIC 2016. We ablate
from two aspects: the effect of UAFR in each layer and
whether UAFR is better than other similar designs. The red
line denotes adding UAFR at each layer in the encoder (layer
1-5) and decoder (layer 6-7). The green and purple lines denote
layer-wisely adopting two other similar attention mechanisms:
SENet and CBAM. The blue dot line denotes using the
baseline model and the red dot line denotes the best usage
of UAFR. The results show that UAFR is effective for every
layer, and performs the best when added at all layers. Besides,
UAFR outperforms SENet and CBAM.

TABLE IX: Results of design variations for UAFR on ISIC
2016. (a) investigate the impact of adopting F(·) before
uncertainty measuring. (b) investigate the impact of different
value for the channel number M in A. Our design performs
the best.

(a)

Architecture Whether adopting F(·) JA DI AC

DeeplabV3+ No 87.17 92.91 96.49
DeeplabV3+ Yes 87.81 93.50 96.79

(b)

Architecture Channel number M of A JA DI AC

DeeplabV3+ M = 1 87.75 93.48 96.68
DeeplabV3+ M = 2 87.81 93.50 96.79
DeeplabV3+ M = 5 87.55 93.35 96.77
DeeplabV3+ M = 10 87.62 93.42 96.73
DeeplabV3+ M = 50 87.53 93.29 96.73
DeeplabV3+ M = 100 87.50 93.26 96.72
DeeplabV3+ M = 500 86.96 92.92 96.39
DeeplabV3+ M = 1000 86.86 92.90 96.28

E. Visualization Results

Qualitative analysis is performed here to facilitate the under-
standing. Fig. 9 visually compares the segmentation results of
Deeplab with our proposed method (Deeplab-based). First to
third rows, fourth to sixth rows, seventh to eighth rows are the
results of ISIC2017, DigestPath, MC datasets respectively. As
shown in red circles, our method achieves better boundary and
structure results. For uncertainty maps of UAFR (Fig. 9(e)),
they are generated by using the feature in layer 2 of the
encoder of DeeplabV3+. In the uncertainty maps, regions with
ambiguous boundaries or heterogeneous textures are clearly
highlighted, meaning that they are successfully located by the
network and receive lower weights. Besides, the segmentation
results are facilitated by suppressing these areas, which are
shown in the dice score below each row of Fig. 9(c) and

TABLE X: Results of different convolutional kernel size of
F(·) for UAFR on ISIC 2016. 3 × 3 kernel size performs the
best.

Architecture Kernel size of F(·) JA DI AC

DeeplabV3+ 1 × 1 87.14 93.13 96.77
DeeplabV3+ 3 × 3 87.81 93.50 96.79
DeeplabV3+ 5 × 5 87.50 93.39 96.67
DeeplabV3+ 7 × 7 87.27 93.23 96.73

Fig. 7: Comparison of proposed two modules against the
baseline with varied training data sizes. Model equipped with
both modules surpasses the baseline model trained with all
data by using only 25% data.

Fig. 9(d).
For PDCR, we follow the setting of [26] and use t-

SNE [62] to visualize the effect. Specifically, we first take 128
sampled hidden vectors from each 2-4 layers of the network
with or without PDCR. Then, t-SNE is used to visualize
the distribution for each class. Here the class means the
segmentation category of an image. Thus the distribution of
different classes could be generated, which reflects whether the
feature is discriminative among different classes. As shown in
Fig. 8, the comparison clearly shows that PDCR is effective in
discriminating different hidden vectors through clustering and
it is owing to, as we think, the power of continuously con-
trolled contrastive regularization. Besides, H-PDCR achieves
better discrimination results, proving the effectiveness of its
extension from RF-PDCR.

F. Limitation of our work

The main limitation of our work is that for measuring
the affinity score of patches, the foreground ratio does not
consider the spatial distribution information. We try two ways:
the first way is foreground ratio, and the second way is dice
similarity. The first way performs better, but in few cases,
the two patches will share a similar foreground ratio (area
ratio between foreground region and background region is
similar) but their foreground region has different distribution
information (for example scattered v.s. centrally distributed).
The spatial distribution information could be better utilized.
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Layer 2 Layer 4Layer 3

W/O PDCR

W/ RF-PDCR

W/ H-PDCR

Fig. 8: The distributions of various classes for sampled hidden
vectors from 2-4 layers of encoder without and with PDCR.
Each color denotes a class. It’s convincing that PDCR helps
to increase discrimination ability by encouraging clustering.
Besides, compared to RF-PDCR, H-PDCR clusters better,
which is in line with its better quantitative results.

VI. CONCLUSION AND FUTURE WORK

In this work, we propose patch-dragsaw contrastive reg-
ularization (PDCR) to generate more discriminate features,
which is a key challenge of medical image segmentation tasks.
In PDCR, we re-formulate the “pair” of contrastive leaning,
including the component and the relationship, to regularize
patch-level relations by contrastive constraints. Besides, an-
other module named uncertainty-aware feature re-weighting
(UAFR) is introduced to perform feature selection according
to the uncertainty modeled by the network itself, to generate
more selective representations.

The experiment results verify the effectiveness of PDCR and
UAFR. Specifically, PDCR proposes a new formulation of the
component (local patches) and the relationship (soft instead
of rigid) for contrastive learning. The experiment results of
PDCR achieve consistent improvement both quantitatively and
qualitatively, and outperform other similar variations. This
is highly in line with the motivation, which means that the
network could generate more discriminative features. Besides,
extending PDCR on all architectures (H-PDCR) is better than
only adopting on the encoder of the segmentation framework
(RF-PDCR). On the other hand, UAFR models the uncertainty
of each pixel and poses different weights on features. The
quantitative and qualitative results verify that it successfully
generates more selective features and outperforms other sim-
ilar designs. Other than those, promising results have been
shown in the limited-data scenario.

In future work, we will improve on two main aspects: (1)
Combine more information to measure the affinity score on
the basis of foreground ratio information. For instance, spatial
distribution or structure information for every two patches in
a pair could be considered and measured. (2) Further explore
the functionality of the proposed two modules in un-/semi-
supervised learning.

Input GT Deeplab Ours Uncertainty map

(a) (b) (c) (d) (e)

Dice: 0.9537

Dice: 0.9662

Dice: 0.9615

Dice: 0.9144

Dice: 0.9457

Dice: 0.9238

Dice: 0.7981 Dice: 0.8109

Dice: 0.8043Dice: 0.7688

Dice: 0.7802 Dice: 0.8085

Dice: 0.9856Dice: 0.9682

Dice: 0.9789 Dice: 0.9878

Fig. 9: Visualization results of Deeplab and our method
(Deeplab-based) on ISIC 2017 (1-3 rows), DigestPath (4-6
rows) and MC (7-8 rows). (a) is the original images, (b) is
the groundtruth mask, (c) is the results of the Deeplab, (d) is
the result of our method and (e) is the visualization results
of the generated uncertainty map. In (e), regions with lighter
color denotes larger uncertainty, and the red circles denote
regions with high uncertainty. It can be seen that obscured
boundaries and heterogeneous features could be effectively
detected, resulting to more selective representations. Besides,
quantitatively, the segmentation results are facilitated by sup-
pressing these areas, which are shown in the dice score below
each row.
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