
Reproducibility Companion Paper: Norm-in-Norm Loss
with Faster Convergence and Better Performance

for ImageQuality Assessment
Dingquan Li

dingquanli@pku.edu.cn
Peking University & Peng Cheng Lab.

China

Tingting Jiang∗
ttjiang@pku.edu.cn
Peking University

China

Ming Jiang
ming-jiang@pku.edu.cn

Peking University
China

Vajira Lasantha Thambawita
vajira@simula.no

SimulaMet
Norway

Haoliang Wang
hawang@adobe.com

Adobe Research
USA

ABSTRACT
This companion paper supports the experimental replication of the
paper “Norm-in-Norm Loss with Faster Convergence and Better
Performance for Image Quality Assessment” presented at ACM
Multimedia 2020. We provide the software package for replicat-
ing the implementation of the “Norm-in-Norm” loss and the cor-
responding “LinearityIQA” model used in the original paper. This
paper contains the guidelines to reproduce all the experimental re-
sults of the original paper.

CCS CONCEPTS
• Computing methodologies → Image processing; Super-
vised learning by regression; Image representations; • General
and reference→ Measurement; Metrics.

KEYWORDS
IQA; faster convergence; loss; normalization; reproducibility
ACM Reference Format:
Dingquan Li, Tingting Jiang, Ming Jiang, Vajira Lasantha Thambawita,
and Haoliang Wang. 2021. Reproducibility Companion Paper: Norm-in-
Norm Loss with Faster Convergence and Better Performance for Image
Quality Assessment. In Proceedings of the 29th ACM Int’l Conference on Mul-
timedia (MM ’21), Oct. 20–24, 2021, Virtual Event, China. ACM, New York,
NY, USA, 4 pages. https://doi.org/10.1145/3474085.3477937

1 SOFTWARE PACKAGE DESCRIPTION
The software package is available at: https://github.com/lidq92/
LinearityIQA. It is written in Python language with the Py-
Torch framework [4]. The program is executed in command
∗Corresponding Author

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACMmust be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
MM ’21, October 20–24, 2021, Virtual Event, China.
© 2021 Association for Computing Machinery.
ACM ISBN 978-1-4503-8651-7/21/10…$15.00
https://doi.org/10.1145/3474085.3477937

line and it supports customization by optional parameters.
The KonIQ-10k [2] and CLIVE [1] datasets can be down-
loaded from the official links or an alternative link provided
by us. The model weights pre-trained on KonIQ-10k train set
can be downloaded in https://drive.google.com/drive/folders/
1S5XljhTyKsFkRclhijXBM6SrcD5Tov6Z, though it can also be
re-trained with the provided source code.

The descriptions of files and folders in this software package are
as follows.

• README.md: It is the documentation of this repository.
• data/: It contains the information (e.g., MOS values) of

KonIQ-10k and CLIVE datasets (KonIQ-10kinfo.mat and
CLIVEinfo.mat), as well as a test image (1000.JPG).

• requirements.txt: It is the collections of package require-
ments.

• IQAdataset.py: It is used to prepare the IQA dataset for
data loading.

• IQAmodel.py: It is to define the IQA model, i.e., “Lineari-
tyIQA”.

• IQAloss.py: It is used to define the loss function for IQA
model training. This file contains the implementation of
“Norm-in-Nrom” loss.

• IQAperformance.py: It is used to calculate the perfor-
mance metrics of the IQA model.

• modified_ignite_engine.py: It is a naive modification of
ignite engine to support automatic mixed precision (amp).

• main.py: The main file for training the IQA model.
• test_dataset.py: It is used for testing the performance of a

trained IQA model on a dataset.
• test_demo.py: It is a test demo using the pre-trained IQA

model.
• results_in_the_paper/: This folder contains the repro-

duced results and procedures for reproducing the tables and
figures in the original paper.

2 INSTALLATION
The software package can be downloaded with this command:

1 git clone https :// github.com/lidq92/LinearityIQA.git

https://doi.org/10.1145/3474085.3477937
https://github.com/lidq92/LinearityIQA
https://github.com/lidq92/LinearityIQA
https://doi.org/10.1145/3474085.3477937
https://drive.google.com/drive/folders/1S5XljhTyKsFkRclhijXBM6SrcD5Tov6Z
https://drive.google.com/drive/folders/1S5XljhTyKsFkRclhijXBM6SrcD5Tov6Z

2.1 System Environment
Our experiment was tested with Intel(R) Xeon(R) CPU E5-2620 v4
@ 2.10GHz CPU, 128GB RAM and NVIDIA GeForce RTX 2080 Ti.
The operating system is Ubuntu 16.04.1 LTS. The following depen-
dencies is required for reproducing the experiments:

• Python: tested with version 3.6.9. It can be installed with
anaconda distribution following this command:

1 conda create -n reproducibleresearch pip python =3.6

• CUDA Toolkit and cuDNN: tested with CUDA 10.0 and
cuDNN 7.6.2. The installation can refer to official guide.

• Python Dependencies: The python packages used in the
experiment. Except for the apex package, they can all be
automatically installed with the command:

1 source activate reproducibleresearch

2 pip install -r requirements.txt

And the apex package (version 0.1) is installed from its of-
ficial GitHub link.

1 git clone https :// github.com/NVIDIA/apex.git

2 cd apex

3 pip install -v --no -cache -dir --global -option="--

cpp_ext" --global -option="--cuda_ext" ./ >

install.log

4 cd .. && rm -rf apex

3 REPRODUCED EXPERIMENT
After installing the software package, we can now conduct the re-
produced experiments.

3.1 Downloading Datasets
The datasets KonIQ-10k (10073 images) and CLIVE (1162 im-
ages) used in the paper can be downloaded from the official
links http://database.mmsp-kn.de/koniq-10k-database.html and
https://live.ece.utexas.edu/research/ChallengeDB/index.html
(or an alternative link https://drive.google.com/drive/folders/
1E4nl3Y8yUDaKH2r0BjEQ6cFwdmMZaQQh?usp=sharing).
And then decompress the files by following the bash com-
mands provided in README.md. We make soft links for the
datasets to ‘root-of-the-repository/KonIQ-10k’ and ‘root-of-the-
repository/CLIVE’, respectively.

3.2 Parameters andTheir Default Values
One can use the command python main.py –help to have a look
at the parameters and their default values. We list some important
parameters here.

• learning_rate: learning rate, default 1e-4.
• batch_size: batch size, default 8.
• ft_lr_ratio: fine-tuned rate, i.e., the ratio between the learn-

ing rate of the backbone’s parameters and of the other pa-
rameters, default 0.1.

• architecture: the architecture, default resnext101_32x8d.
• use_bn_end: the option to use batch normalization at the

end of the output, default False.
• loss_type: the loss function, e.g., mae for MAE, mse for

MSE, and norm-in-norm for “Norm-in-Norm” loss. default
value is norm-in-norm.

• p: the hyper-parameter p in the “Norm-in-Norm” loss, de-
fault 1.

• q: the hyper-parameter p in the “Norm-in-Norm” loss, de-
fault 2.

• dataset: the considered dataset, default KonIQ-10k.
• resize: the option to set the image resized, default False.
• test_during_training: the option to test the performance

of the test set in order to draw the test curve, default False.
For the test_dataset.py, there is onemore important parameter,

i.e., trained_model_file, which is used for setting the path to the
trained model file.

3.3 Reproducing Procedure
3.3.1 Reproducing Figure 1. To reproduce the results of Figure 1,
we can set the parameter loss_type to different values including
mae, mse and norm-in-norm. The results can be obtained by exe-
cuting the following commands.

1 python main.py --dataset KonIQ -10k --resize --loss_type

mae --test_during_training

2 python main.py --dataset KonIQ -10k --resize --loss_type

mse --test_during_training

3 python main.py --dataset KonIQ -10k --resize --loss_type

norm -in -norm --test_during_training

Listing 1: Commands for obtaining results of Figure 1

It would take about 930 seconds per epoch for the model
with the default resnext101_32x8d architecture during the
training. After completing the above commands, we open
TensorBoard visualization with tensorboard - -logdir=runs
- -port=6006. Then, we can download the performance metric
(SROCC/PLCC/RMSE) values in each stage (train/val/test)
and each loss (mae/mse/norm-in-norm) from TensorBoard
visualization, which are saved as the following format:
'loss={}-{}_KonIQ-10k_{}.csv'.format(loss, stage, metric)

These files are saved in results_in_the_paper/csv/. Finally, we
can plot Figure 1 based on these results.

1 cd results_in_the_paper

2 python loss_performance_curves.py

3 cd ..

Listing 2: Commands for plotting Figure 1

3.3.2 Reproducing Figure 4. To reproduce the results of Figure 4,
we can choose the option use_bn_end to set it be True.The results
can be obtained by executing the following commands.

1 # python main.py --resize --loss_type norm -in -norm --

test_during_training # done before

2 # python main.py --resize --loss_type mse --

test_during_training # done before

3 python main.py --resize --loss_type mse --

test_during_training --use_bn_end

Listing 3: Commands for obtaining results of Figure 4

After completing the above commands, we can download the
performance metric (SROCC/PLCC) values in the val stage and
for each loss (Norm-in-Norm/MSE/bnMSE) from TensorBoard
visualization, which are saved as the following format:
'{}-{}.csv'.format(loss, metric)

https://github.com/NVIDIA/apex
https://github.com/NVIDIA/apex
http://database.mmsp-kn.de/koniq-10k-database.html
https://live.ece.utexas.edu/research/ChallengeDB/index.html
https://drive.google.com/drive/folders/1E4nl3Y8yUDaKH2r0BjEQ6cFwdmMZaQQh?usp=sharing
https://drive.google.com/drive/folders/1E4nl3Y8yUDaKH2r0BjEQ6cFwdmMZaQQh?usp=sharing

These files are saved in results_in_the_paper/csv/. Finally, we
can plot Figure 4 based on these results.

1 cd results_in_the_paper

2 python bnMSE.py

3 cd ..

Listing 4: Commands for plotting Figure 4

3.3.3 Reproducing Figure 5. To reproduce the results of Figure 5,
we can vary the parameters (lr/bs/ft_lr_ratio). The learning rate
(lr) is chosen from 1e-3, 1e-4, and 1e-5. The batch size (bs) varies
from 4, 8, and 16. And the “fine-tuned rate” (ft_lr_ratio) is selected
from 0, 0.01, 0.1, and 1. The results can be obtained by executing
the following commands.

1 ## base exp

2 python main.py --resize -lr 1e-4 -bs 8 --ft_lr_ratio 0.1

-arch resnet50

3 # other lr

4 python main.py --resize -lr 1e-3 -arch resnet50

5 python main.py --resize -lr 1e-5 -arch resnet50

6 # other bs

7 python main.py --resize -bs 4 -arch resnet50

8 python main.py --resize -bs 16 -arch resnet50

9 # other ft_lr_ratio

10 python main.py --resize --ft_lr_ratio 0 -arch resnet50

11 python main.py --resize --ft_lr_ratio 0.01 -arch resnet50

12 python main.py --resize --ft_lr_ratio 1 -arch resnet50

Listing 5: Commands for obtaining results of Figure 5

After completing the above commands, we can download the
PLCC values in the val stage for the norm-in-norm loss and for
each parameter (lr/bs/ft_lr_ratio) value from TensorBoard visual-
ization, which are saved as the following format:
'loss=norm-in-norm-{}={}-val_KonIQ-10k_PLCC.csv'
.format(parameter, value)

These files are saved in results_in_the_paper/csv/. Finally, we
can plot Figure 5 based on these results.

1 cd results_in_the_paper

2 python lr_performance_plot.py

3 python batch_size_performance_plot.py

4 python ft_lr_ratio_performance_plot.py

5 cd ..

Listing 6: Commands for plotting Figure 5

3.3.4 Reproducing Figures 6 & 7. To reproduce the results of Fig-
ures 6 & 7, we can vary the parameter arch to set different back-
bone architectures. The results can be obtained by executing the
following commands.

1 ## Training on KonIQ -10k train set

2 python main.py --resize -arch resnet18

3 python main.py --resize -arch resnet34

4 # python main.py --resize -arch resnet50 # done before

5 # python main.py --resize -arch resnext101_32x8d # done

before

6 ## Testing on KonIQ -10k test set and CLIVE using

test_dataset.py

7 python test_dataset.py --resize -arch resnet18

8 python test_dataset.py --resize -arch resnet34

9 python test_dataset.py --resize -arch resnet50

10 python test_dataset.py --resize -arch resnext101_32x8d

11 python test_dataset.py --resize -arch resnet18 --dataset

CLIVE

12 python test_dataset.py --resize -arch resnet34 --dataset

CLIVE

13 python test_dataset.py --resize -arch resnet50 --dataset

CLIVE

14 python test_dataset.py --resize -arch resnext101_32x8d --

dataset CLIVE

Listing 7: Commands for obtaining results of Figures 6 & 7

After completing the above commands, we obtain the
test PLCC values on KonIQ-10k test set and SROCC values
on CLIVE for each arch (ResNet-18/ResNet-34/ResNet-
50/ResNeXt-101) from the printed screen, which are
filled into backbone_performance_plot.py in the directory
‘results_in_the_paper/’. When arch corresponds to ResNeXt-
101, we move the corresponding saved results (in the directory
‘results/’) to results_in_the_paper/npy/ and rename them with the
following format:
'{}-{}.npy'.format(dataset, loss)

Where dataset can beKonIQ-10k orCLIVE, and loss can beMAE,
MSE, or Norm-in-Norm. Finally, Figures 6 & 7 are plotted based
on the following commands.

1 cd results_in_the_paper

2 python backbone_performance_plot.py # plot Figure 6

3 python scatter_plots.py # plot Figure 7

4 cd ..

Listing 8: Commands for plotting Figures 6 & 7

3.3.5 Reproducing Table 1. To reproduce the results of Table 1, we
can vary the values of p, q, and arch. The results are printed to the
screen by executing the following commands.

1 python main.py --resize -arch resnet18 --p 1 --q 1

2 python main.py --resize -arch resnet18 --p 1 --q 2

3 python main.py --resize -arch resnet18 --p 2 --q 1

4 python main.py --resize -arch resnet18 --p 2 --q 2

5 python main.py --resize -arch resnet34 --p 1 --q 1

6 python main.py --resize -arch resnet34 --p 1 --q 2

7 python main.py --resize -arch resnet34 --p 2 --q 1

8 python main.py --resize -arch resnet34 --p 2 --q 2

9 python main.py --resize -arch resnet50 --p 1 --q 1

10 python main.py --resize -arch resnet50 --p 1 --q 2

11 python main.py --resize -arch resnet50 --p 2 --q 1

12 python main.py --resize -arch resnet50 --p 2 --q 2

13 python main.py --resize --p 1 --q 1

14 python main.py --resize --p 1 --q 2

15 python main.py --resize --p 2 --q 1

16 python main.py --resize --p 2 --q 2

Listing 9: Commands for obtaining results of Table 1

3.3.6 Reproducing Table 2. To reproduce the results of Table 2, we
can vary the values of p, q, and arch. The results are printed to the
screen by executing the following commands.

1 ## Training

2 python main.py --resize # done before

3 python main.py --resize --alpha 1 0.1

4 ## Testing

5 python test_dataset.py --dataset KonIQ -10k --resize

6 python test_dataset.py --dataset KonIQ -10k --resize --

alpha 1 0.1

7 python test_dataset.py --dataset CLIVE --resize

8 python test_dataset.py --dataset CLIVE --resize --alpha 1

0.1

Listing 10: Commands for obtaining results of Table 2

3.3.7 Reproducing Supplemental Results. In this part, we show
how to reproducing the supplemental results.

For reproducing Figures A1 & A2, uncomment line 96 of
IQAloss.py to print the value of 𝑏 and plot the figures with
results_in_the_paper/bhat.py.

1 python main.py --resize > bhat.log 2>&1 &

2 cd results_in_the_paper

3 python bhat.py

4 cd ..

Listing 11: Commands for reproducing Figures A1 & A2

For reproducing Table A1, change the optimizer Adam to SGD
or Adadelta and other settings are same as the settings for Figure
5(a). For reproducing Table A2, set -arch to alexnet or vgg16 and
other settings are same as the settings for Figure 6. At last, set -
arch to resnet18 and dataset to CLIVE. Run experiments from
exp_id=0 to exp_id=9, and the paired t-test can be conducted based
on PLCC values over these ten runs.

3.4 Experimental Summary
We have set a fixed seed 19920517 and discarded randomness as
much as possible for reproducible experiments. Based on the re-
producing procedure, with the same system environment, we can
exactly reproduce all the reported results in the original paper [3].
We also tested the software in different system environments, and
a minor difference in the system environment may cause a minor
change in the reproduced results. However, the main observations
in the original paper are still validated.

4 REVIEWING PROCESS
In the review process, the experimental setup was initiated by re-
viewers according to the instructions given in the GitHub reposi-
tory. Then, reviewers performed most of the experiments from the
training to the prediction steps to reproduce the results presented
in the paper. In addition to training from scratch, pre-generated
checkpoints were evaluated by reproducing the results presented
in the tables using the checkpoints.

Overall, the software package has clear installation instructions
and works as expected. During the review process, several minor
issues were found, including availability of data sources used by

the software, clarification of version of certain library used by the
software, paths of the dataset, improvements to the argument pars-
ing and repository structure. Suggestions were provided to the au-
thors and the issues have been addressed in the revised version.

In conclusion, reviewers and authors worked together for this
companion paper. The revised code now enables other researchers
to reproduce the experimental results in the original paper as well
as build their own solutions on top of it.

5 CONCLUSION
In this paper, we documented the replication of the original paper
entitled “Norm-in-Norm Loss with Faster Convergence and Better
Performance for Image Quality Assessment”. According to the ex-
periments, the results are corresponding to the observations in the
original paper. It is reproduced that the Norm-in-Norm loss can
consistently facilitate faster convergence and better performance
than traditional MAE/MSE loss over different network architec-
tures, datasets, and optimizers due to its embedded normalization
operation.

ACKNOWLEDGMENTS
This work was partially supported by National Science Founda-
tion of China under Grants 61572042 and 11961141007 and Sino-
German Center for Research Promotion under Grant M-0187.
We also acknowledge High-Performance Computing Platform of
Peking University for providing computational resources.

REFERENCES
[1] Deepti Ghadiyaram and Alan C. Bovik. 2016. Massive online crowdsourced study

of subjective and objective picture quality. IEEE Transactions on Image Processing
25, 1 (2016), 372–387.

[2] Vlad Hosu, Hanhe Lin, Tamas Sziranyi, and Dietmar Saupe. 2020. KonIQ-10k: An
ecologically valid database for deep learning of blind image quality assessment.
IEEE Transactions on Image Processing 29 (2020), 4041–4056.

[3] Dingquan Li, Tingting Jiang, andMing Jiang. 2020. Norm-in-norm loss with faster
convergence and better performance for image quality assessment. In ACM Inter-
national Conference on Multimedia. 789–797.

[4] Adam Paszke, SamGross, FranciscoMassa, Adam Lerer, James Bradbury, Gregory
Chanan, Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, Alban Des-
maison, Andreas Kopf, Edward Yang, Zachary DeVito, Martin Raison, Alykhan
Tejani, Sasank Chilamkurthy, Benoit Steiner, Lu Fang, Junjie Bai, and Soumith
Chintala. 2019. PyTorch: An imperative style, high-performance deep learning
library. In Advances in Neural Information Processing Systems. 8024–8035.

	Abstract
	1 SOFTWARE PACKAGE DESCRIPTION
	2 INSTALLATION
	2.1 System Environment

	3 Reproduced EXPERIMENT
	3.1 Downloading Datasets
	3.2 Parameters and Their Default Values
	3.3 Reproducing Procedure
	3.4 Experimental Summary

	4 REVIEWING PROCESS
	5 CONCLUSION
	Acknowledgments
	References

