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ABSTRACT

To guarantee a satisfying Quality of Experience (QoE) for
consumers, it is required to measure image quality efficiently
and reliably. The neglect of the high-level semantic informa-
tion may result in predicting a clear blue sky as bad quality,
which is inconsistent with human perception. Therefore, in
this paper, we tackle this problem by exploiting the high-level
semantics and propose a novel no-reference image quality as-
sessment method for realistic blur images. Firstly, the whole
image is divided into multiple overlapping patches. Secondly,
each patch is represented by the high-level feature extracted
from the pre-trained deep convolutional neural network mod-
el. Thirdly, three different kinds of statistical structures are
adopted to aggregate the information from different patch-
es, which mainly contain some common statistics (i.e., the
mean&standard deviation, quantiles and moments). Finally,
the aggregated features are fed into a linear regression model
to predict the image quality. Experiments show that, com-
pared with low-level features, high-level features indeed play a
more critical role in resolving the aforementioned challenging
problem for quality estimation. Besides, the proposed method
significantly outperforms the state-of-the-art methods on t-
wo realistic blur image databases and achieves comparable
performance on two synthetic blur image databases.
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1 INTRODUCTION

In the era of big data, images have become the primary
carrier of information in human’s daily life. Before ultimately
received by a human observer, digital images may suffer from
a variety of distortions. Quality of Experience (QoE), whose
goal is to provide a satisfying end-user experience, has drawn
increasing attention. To reach this goal, a critical precondition
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is to conduct image quality assessment (IQA). The most
reliable way to assess image quality is subjective ratings, but
it is often cumbersome, expensive and difficult to carry out in
reality. Thus, objective IQA methods that can automatically
predict image quality efficiently and effectively are needed.
Objective IQA can be categorized into full-reference IQA (FR-
IQA) [39, 44], reduced-reference IQA (RR-IQA) [27, 46] and
no-reference IQA (NR-IQA) [9, 47]. Due to the unavailability
of the reference image in most practical applications, NR-IQA
is preferable but also more challenging.

In this paper, we focus on NR-IQA of realistic blur images.
Blur is often induced by following reasons: (1) out-of-focus, (2)
relative motion between the camera and the objects (object
motion & camera shake), (3) non-ideal imaging systems (e.g.,
lens aberration), (4) atmospheric turbulence, and (5) image
post-processing steps (such as compression and denoising) [5,
10, 24]. Except the blur in Bokeh to strengthen the photo’s
expressiveness, it is a definite fact that unintentional blur
impairs image quality.

(a) MOS=4.0637 (b) MOS=2.3413

Figure 1: The two images are from BID [4], and
larger MOS indicates better subjective image qual-
ity. The three traditional methods (MDWE [21],
FISH [38], LPC [10]) predict that (a) is worse than
(b). Our method predicts that (a) is better than (b),
which is consistent with subjective ratings.

Traditional NR-IQA methods of blur images are mainly
based on the assumptions that blur leads to the spread of
edges (e.g., MDWE [21]), the reduction of high-frequency
energy (e.g., FISH [38]) or the loss of local phase coherence
(e.g., LPC [10]). However, these methods neglect the high-
level semantic information, and can not distinguish neither
between intrinsic flat regions and blurry regions, nor between
structures with and without blurring. As a result, it is shown
in Figure 1 that they predict the quality of a clear sky be-
ing worse than the quality of a blurry mouse, which is not
consistent with human perception.
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In this work, we tackle the problem by exploiting the
high-level semantic features extracted from the pre-trained
deep convolutional neural network (DCNN) models. First of
all, since the pre-trained DCNN models (e.g., AlexNet [15])
require a fixed input size, we need to determine how to
represent an image. We compare four different image rep-
resentations, and find that the multi-patch representation
significantly better than the others. Secondly, we need to de-
cide which pre-trained DCNN model and which layer
to extract image features. We first explore the effective-
ness of features extracted from different layers in a same
pre-trained DCNN model, and find out high-level features
from the top third or second layer more effective in realistic
blur image assessment. Then we investigate the impact of
different pre-trained models, and find out the one using resid-
ual learning (i.e.,ResNet-50 [11]) more suitable for NR-IQA
of realistic blur images. Thirdly, as a result of the multi-
patch representation, we derive a set of features for an image.
So another question arises: how to aggregate a set of
extracted features? One simple way is to use the mean
feature vector to represent the feature set. However, it will
lose important information (e.g., the standard deviation in
each dimension) of the feature set. So we propose three dif-
ferent statistical structures for feature aggregation, namely,
mean&std aggregation, quantile aggregation and moment ag-
gregation. As the dimension of the aggregated feature is still
very high, we finally feed the aggregated feature into a linear
regression model, known as partial least square regression
(PLSR) [28], to predict the image quality.

Experiments are conducted on two realistic blur image
databases (BID [4] and CLIVE [6]), as well as two synthetic
blur image databases (TID2008 [26] and LIVE [31]). Our best
proposal, named Semantic Feature Aggregation metric using
PLSR (SFA-PLSR), is compared with the state-of-the-art
methods. Experiments show that our method significantly
outperforms the state-of-the-art on BID and CLIVE, and
achieves comparable performance on TID2008 and LIVE. The
good generalization ability of SFA-PLSR is validated by the
cross dataset evaluation. We have also experimentally shown
that high-level semantic features indeed play a more critical
role than low-level features in resolving the challenging issue
for NR-IQA of realistic blur images (see Figure 1). This
indicates a new perspective of blur perception in terms of
the semantic loss.

The remainder of this paper is organized as follows. Sec-
tion 2 reviews the related work on NR-IQA of blur images.
Section 3 introduces the benchmark databases and perfor-
mance criteria. Section 4 describes our method in details.
Section 5 discusses the experimental results and analysis.
And conclusions are made in Section 6.

2 RELATED WORK

2.1 Learning free methods

Learning free methods use the characteristics of blur in terms
of the spread of edges, the smoothing effects, the reduction
of high frequency components or the loss of phase coherence.

The spread of edges can be used as a cue for blur estimation.
Marziliano et al. [21] used the average edge spread over all
detected vertical Sobel edge locations as a quality metric
for blur images. It can be further improved by incorporating
the concept of just noticeable blur (JNB) [5] to adapt for
the perception of human visual system (HVS). Since blur
is not likely to be perceived when the edge width is small
enough (below the width corresponding to JNB), Narvekar
and Karam [24] assigned the quality score as the percentage
of edges whose blur cannot be detected.

The smoothing effects of the blur process is useful infor-
mation for NR-IQA. Gu et al. [8] estimated image quality
based on the energy-differences and contrast-differences of
the locally estimated coefficients in the autoregressive pa-
rameter space. Bahrami and Kot [1] considered the content
based weighting distribution of the maximum local variation,
which was modeled by the generalized Gaussian distribution
(GGD). The estimated standard deviation was then used
as an indicator of image quality. Later they also parameter-
ized the image total variation distribution, and predicted
image quality using the standard deviation modified by the
shape-parameter to account for image content variation [2].

Image blur results in the reduction of high frequency com-
ponents. Vu and Chandler [38] estimated image quality using
weighted average of the log-energies of the high-frequency
coefficients. In [37], they generated a quality map based on
a geometric mean of spectral and spatial measures. In view
of the reduction of high-frequency components, the spec-
tral measure was initially defined as the slope of the local
magnitude spectrum, then rectified by a sigmoid function to
account for HVS. To further consider the contrast effect, the
spatial measure was calculated by the local total variation.
Sang et al. [30] estimated image quality using the exponen-
t of the truncated singular value curve of an image. Li et
al. [16] considered the moment energy, which can be affected
by noticeable blur.

Blur also causes the loss of phase coherence, which gives a
different perspective for understanding blur perception [40].
So Hassen et al. [10] estimated image quality based on the
strength of the local phase coherence near edges and lines.

2.2 Learning-based methods

Traditional learning free methods can not accurately express
the diversity of blur process and the complexity of HVS.
So recently machine learning technologies appear in IQA
field. Learning-based methods mainly consist of two steps:
feature extraction and quality prediction. In terms of feature
extraction, these methods fall into two classes: the one using
hand-crafted features and the other using learnt features.

Features can be manually designed using the natural scene
statistics (NSS) of the image. NSS models of image coefficients
in the spatial domain, wavelet domain and DCT domain are
utilized in [22, 23, 29] to extract quality relevant features,
respectively. Tang et al. [35] derived a set of low-level image
quality features from NSS models, texture characteristics and
blur/noise estimation. Ciancio et al. [4] used a neural network
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to combine eight existing methods and low-level features for
blur image quality assessment. Oh et al. [25] evaluated im-
age quality of camera-shaken images through mapping the
spectral direction and shape features using support vector
regression (SVR). Li et al. [18] took gradient similarity, sin-
gular value similarity and DCT domain entropies as quality
features in a multi-scale framework. Li et al. [19] jointly
considered the structural and luminance information in pre-
dicting image quality, where the structure information was
described by the local binary pattern distribution and the
normalized luminance magnitudes distribution portrayed the
luminance information.

Machine learning techniques can learn quality relevant
features. Li et al. [17] and Lu et al. [20] extracted learnt
features based on dictionary learning. Visual codebook is
used to learn quality features in [41, 43]. Convolutional neural
networks (CNN) have also been used to learn quality relevant
features in NR-IQA [3, 13, 14, 32, 33, 45]. Kang et al. [13]
integrated feature learning and patch quality prediction into
an end-to-end network, and the image quality was estimated
by the average score of all sampling patches. Following [13],
the network was deeper and weights for patch scores were
also integrated into the learning process [3]. In [45], CNN
was used to learn features and the general regression neural
network was used as the predictor. In [14], a sub-network
was first trained on patches using the FR-IQA scores, and
then a whole network from images to quality was trained.

The most related works to ours are [32, 33], which resize
the image to meet the required input size of the pre-trained
AlexNet so as to extract the image features. Our work differs
from them mainly in three ways: (1) Unlike [32, 33], we use
multiple overlapping image patches instead of the resized
image to represent the image, which can avoid introducing
deformation as well as cover the image information. Corre-
spondingly, we propose three effective statistical structures
to conduct feature aggregation. (2) The features extracted
from the pre-trained DCNN model in [32, 33] are only used
as the auxiliary to boost the performance of methods based
on low-level features, while our aggregated semantic features
are directly used as quality relevant features. (3) We focus
on realistic blur, and since residual images contain important
cues about image blur, the residual learning based network
(ResNet-50 [11]) is selected as the feature extractor instead
of the one in [32, 33] without residual learning.

3 BENCHMARK DATABASES AND
PERFORMANCE CRITERIA

3.1 Benchmark Databases

In this work, we consider two realistic image databases
(BID [4] and CLIVE [6]), as well as two synthetic blur image
datasets from TID2008 [26] and LIVE [31].

BID includes totally 586 realistic blur images taken from
real world along with a variety of scenes, light conditions,
camera apertures and exposure time. Subjective quality scores
are provided in the form of mean opinion score (MOS) ranging
from 0 to 5.

CLIVE includes 1162 realistic distorted images captured
using real-world mobile cameras, most of which suffer from
motion blur or out-of-focus blur. Subjective quality scores
are provided in the form of MOS ranging from 0 to 100.

TID2008 contains 1700 distorted images, in which we
only consider the 100 Gaussian blur images. There are only
25 reference images, and 4 blur kernels for each reference
image. Subjective quality scores are provided in the form of
MOS ranging from 0 to 9.

LIVE contains 779 distorted images, in which we only
consider the 145 Gaussian blur images. There are only 29
reference images, and 5 blur kernels for each reference im-
age. Subjective quality scores are provided in the form of
Difference of MOS (DMOS) ranging from 0 to 100.

3.2 Performance Evaluation Criteria

Three evaluation criteria are chosen to evaluate the perfor-
mance of NR-IQA methods: Spearman’s rank-order correla-
tion coefficient (SROCC), Pearson’s linear correlation coeffi-
cient (PLCC) and root mean square error (RMSE). PLCC
and RMSE are used for measuring prediction accuracy, while
SROCC is used for measuring prediction monotonicity. For
these three criteria, larger PLCC/SROCC and smaller RMSE
indicate better performance. Before calculating PLCC and
RMSE values of the learning free methods, a nonlinear fitting
is needed to map the objective scores to the same scales of the
subjective scores. In this paper, we adopt the the following
four-parameter logistic function recommended in [36].

𝑓(𝑥) =
𝜏1 − 𝜏2

1 + 𝑒
𝑥−𝜏3
𝜏4

+ 𝜏2 (1)

where 𝜏1 to 𝜏4 are free parameters to be determined during
the curve fitting process.

Monte-Carlo cross validation is used for learning-based
methods. For each database, 80% data are for training and
20% data are for testing. There is no same “original images”
between training data and testing data. This procedure is
repeated 1000 times and the median or mean values are re-
ported. It should be noted that the learning free methods are
tested on the same data as learning-based methods. Besides,
we should specifically point out that the training data on
BID are used in Section 4 for the comparative study.

4 THE PROPOSED METHOD

The framework of the proposed method is shown in Figure 2,
including four steps: image representation, feature extraction,
feature aggregation, and quality prediction. In this section,
we will conduct an in-depth comparative study to determine
the best choice for each step.

4.1 Image Representation

The pre-trained DCNN models (e.g., AlexNet) require a fixed
input size. To meet this requirement, images can be cropped,
or resized to the fixed size. Since the resizing operation can
introduce geometric deformation, which may change the im-
age quality, it is not a good way. In the mean time, cropping
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Figure 2: The overall framework of the proposed method, mainly includes four steps: image representation,
feature extraction, feature aggregation, and quality prediction.

only the central patch is not enough to cover the information
of a large image. Because of these two issues, we consider
using multiple overlapping patches to represent the image,
which not only covers information of the whole image but
also avoids introducing geometric deformation.

We compare the impact of four different image represen-
tations, including the cropping, scaling, padding and multi-
patch representation. Cropping representation uses the cen-
tral patch to represent the image. Padding representation
preserves the aspect ratio by resizing the larger dimension
to the required length and then padding zeros to the smaller
dimension. Scaling representation directly resizes the image
without keeping the original aspect ratio. Multi-patch rep-
resentation generates multiple overlapping patches that are
uniformly sampled over the whole image with a sampling
stride1.
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Figure 3: Comparison among different image repre-
sentations. No matter which layer is used to extract
features, the multi-patch representation achieves the
best performance.

1There is no significant performance variation among different sampling
strides when it is subjected to cover the whole information, so the
sampling stride is simply fixed to be half of the patch size.

To perform the comparison, we need a baseline for feature
extraction, feature aggregation and quality prediction. Be-
fore the comparative study on the following steps, we choose
the classical pre-trained DCNN model AlexNet and extract
features from the frequently-used fully connected layers (i.e.,
𝑓𝑐6, 𝑓𝑐7 and 𝑓𝑐8). For feature aggregation, we choose the
mean feature vector for simplicity. PLSR is used for quality
prediction. The comparative study is conducted on the train-
ing data of BID, where 20% of the training data are used
as validation data and the performance on the validation
set is used for comparison (the same below). It can be seen
from Figure 3 that (1) cropping representation obtains the
worst performance, (2) since resizing operation keeps most of
the image information, padding and scaling representation
achieve better performance than cropping representation, (3)
the use of multi-patch representation significantly outper-
forms the other three. So we decide to use the multi-patch
representation in our framework.

4.2 Feature Extraction

Given an image I, we represent it with a set of multiple over-
lapping patches {p1, · · · ,p𝑛}, and then feed these patches
into an off-the-shelf DCNN model to extract features. For
each patch p𝑗 , the extracted feature is denoted by

d𝑗 = 𝐷𝐶𝑁𝑁(p𝑗 , 𝐿; 𝜃), 𝑗 = 1, · · · , 𝑛. (2)

where 𝐿 indicates which layer (e.g., 𝑓𝑐8 layer in AlexNet) to
extract features and 𝜃 is the trained network parameter.

The role of high-level semantics: Pre-trained DCNN
models for image classification or scene recognition have
encoded semantics in high-level features. Here, we conduct
a comparative study to investigate the role of high-level
semantics in NR-IQA of realistic blur images. We take the
AlexNet as the pre-trained model, and extract features of
multiple patches from its different layers2 (𝑐𝑜𝑛𝑣1 to 𝑐𝑜𝑛𝑣5

2Since the response of the convolutional layer is a set of feature maps,
we derive features by global average pooling.
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and 𝑓𝑐6 to 𝑓𝑐8). PLSR maps the mean feature vector to the
quality score. From the plot in Figure 4, we have the following
observations. First, high-level features are better than the
low-level features, which indicates that high-level semantic
features play an important role in NR-IQA of realistic blur
images. However, the feature extracted from the top layer
(𝑓𝑐8) is slightly worse than the second and third top layers
(𝑓𝑐7, 𝑓𝑐6). This is because the top layer is directly linked to
the classifier and the extracted feature is task-specific, which
may contain only the classification information. The third
top layer (𝑓𝑐6), close to the last convolutional layer, achieves
the best performance in terms of SROCC. Therefore, in our
framework, we consider the second or third top layer close to
the last convolutional layer to extract features.

conv1 conv2 conv3 conv4 conv5 fc6 fc7 fc8
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0.571 0.626 0.647 0.660 0.696 0.686 0.680
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0.551

0.615 0.632 0.635 0.680 0.682 0.672

Low-level High-level

Figure 4: [Best viewed in color.] Mean and stan-
dard deviation of SROCC and PLCC. x-axis indi-
cates from which layer (in AlexNet) we extract fea-
tures. The curve indicates the mean values and the
error bars indicate the standard deviations.

Impact of different pre-trained DCNN models: We
also compare different pre-trained DCNN models in the pro-
posed framework, including AlexNet [15], GoogleNet [34] and
ResNet-50 [11], where the features are extracted from the
𝑓𝑐6, 𝑝𝑜𝑜𝑙5/7× 7 𝑠1 and 𝑝𝑜𝑜𝑙5 layer, respectively. The quality
prediction step is still based on PLSR. Figure 5 shows the per-
formance values, from which we can observe that ResNet-50
achieves the best performance. It is shown that the residual
image contains important information in capturing quality
relevant features [42]. Besides, image blur can be more eas-
ily captured in residual images. So the significant gain in
ResNet-50 may due to the residual learning, and we choose
ResNet-50 as the feature extractor.

4.3 Feature Aggregation

With the extracted features, we need to aggregate them into
a single one. One straightforward way is to concatenate all
these 𝑛 features into a long feature vector, i.e.,

f𝑐𝑜𝑛𝑐𝑎𝑡 = d1 ⊕ · · ·d𝑗 · · · ⊕ d𝑛 (3)

where ⊕ is the concatenation operator.
However, it will result in a very high dimension of the

feature space. Besides, the dimension of the concatenated
feature vector will depend on the number of patches, which
is not the same among the images with different resolutions.
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Figure 5: Comparison among different pre-trained
DCNN models.

To avoid this, we can take the mean value of all features in
each dimension, that is,

f𝑚𝑒𝑎𝑛 = (𝑚1, · · · ,𝑚𝑖, · · · ,𝑚𝑙)
𝑇 , (4)

𝑚𝑖 =

∑︀𝑛
𝑗=1 𝑑𝑗𝑖

𝑛
, 𝑖 = 1, · · · , 𝑙.

where 𝑑𝑗𝑖 is the i-th element of d𝑗 and 𝑙 is the dimension of
d𝑗 .

The mean aggregation structure loses important informa-
tion (e.g., the standard deviation in each dimension) of the
feature set. So we propose three different statistical struc-
tures for feature aggregation, namely, mean&std aggregation,
quantile aggregation and moment aggregation.

Mean&std aggregation: The standard deviation in each
dimension is further considered, and the first aggregated
feature f1 is obtained by:

f1 = f𝑚𝑒𝑎𝑛 ⊕ f𝑠𝑡𝑑 (5)

f𝑠𝑡𝑑 =

⎛⎝√︃∑︀𝑛
𝑗=1(𝑑𝑗1 −𝑚1)2

𝑛− 1
, · · · ,

√︃∑︀𝑛
𝑗=1(𝑑𝑗𝑙 −𝑚𝑙)2

𝑛− 1

⎞⎠𝑇

where 𝑚𝑖 is the 𝑖-th element of f𝑚𝑒𝑎𝑛, 𝑖 = 1, · · · , 𝑙.
Quantile aggregation: Quantiles are important order

statistics. We consider the widely used quartiles. The min,
the median and the max are the zeroth, second, and fourth
quartile, respectively. We denote the zeroth to fourth quar-

tile of (𝑑1𝑖, · · · , 𝑑𝑛𝑖) as 𝑑
(0)
𝑖 , 𝑑

(1)
𝑖 , 𝑑

(2)
𝑖 , 𝑑

(3)
𝑖 , 𝑑

(4)
𝑖 , 𝑖 = 1, · · · , 𝑙,

respectively. So the second aggregated feature f2 based on
quartiles can be defined as:

f2 = q0 ⊕ q1 ⊕ q2 ⊕ q3 ⊕ q4 (6)

q𝑡 =
(︁
𝑑
(𝑡)
1 , · · · , 𝑑(𝑡)𝑙

)︁𝑇

, 𝑡 = 0, 1, 2, 3, 4.

Moment aggregation: Moments also play an important
role in describing the statistics of a distribution. Mean is
actually the origin moment of first-order. In order to balance
between the need of more information and the dimension
reduction of the feature space, we further consider the 𝑘-th
root of the central moment of order 𝑘 (𝑘 = 2, 3, 4)3, and

3Note that the first central moment is zero, and here the second central
moment is the variance computed using a divisor of 𝑛 rather than
𝑛 − 1.
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Figure 6: [Best viewed in color.] An example of the three statistical structures for feature aggregation. The
input is 𝑛 = 5 features {d1,d2,d3,d4,d5}, where the feature dimension is 𝑙 = 3. (q0,q1,q2,q3,q4) indicate the five
quartiles, and M𝑘 represents the 𝑘-th root of the central moment of order 𝑘 (𝑘 = 2, 3, 4). Not all the connections
are shown between input and statistical functions for clarity.

obtain the third aggregated feature f3:

f3 = f𝑚𝑒𝑎𝑛 ⊕M2 ⊕M3 ⊕M4 (7)

M𝑘 =

⎛⎝ 𝑘

√︃∑︀𝑛
𝑗=1(𝑑𝑗1 −𝑚1)𝑘

𝑛
, · · · ,

𝑘

√︃∑︀𝑛
𝑗=1(𝑑𝑗𝑙 −𝑚𝑙)𝑘

𝑛

⎞⎠𝑇

where 𝑘 = 2, 3, 4. 𝑚𝑖 is the 𝑖-th element of f𝑚𝑒𝑎𝑛, 𝑖 = 1, · · · , 𝑙.
The aforementioned three statistical structures for feature

aggregation result in a 2𝑙, 5𝑙 and 4𝑙-dimensional feature vector,
respectively. An example of these aggregation structures when
𝑛 = 5, 𝑙 = 3 is shown in Figure 6.

4.3.1 Contribution of Different Statistical Aggregation Struc-
tures. We compare the mean aggregation (baseline) with the
three proposed statistical aggregation structures. The ResNet-
50 is used as the feature extractor of multiple patches and
PLSR is used as the regression model. Table 1 summarizes
the median values of SROCC, PLCC and RMSE. The best
result comes from the ensemble of the three statistical struc-
tures and has been marked in boldface. We can see that the
three proposed statistical structures have significant gain over
the baseline, from which we verify the effectiveness of the
proposed aggregation structures on capturing the information
of the feature set.

4.4 Quality Prediction

With the help of statistical structures for feature aggregation,
we reduce the dimension of feature space (𝑛𝑙 → 2𝑙, 4𝑙, 5𝑙) and
make the dimension independent of the number of patches.
However, in the pre-trained DCNN, 𝑙 is also a large number
(𝑙 = 2048 in ResNet-50’s 𝑝𝑜𝑜𝑙5 layer). Since the dimension
of the feature space is much larger than the number of our
training samples, we consider the linear regression model.
Specifically, partial least square regression (PLSR) [28] is

Table 1: Comparison among different aggregation
structures. “average-quality” means averaging s-
cores of the three proposed structures.

Aggregated Feature SROCC PLCC RMSE

mean (f𝑚𝑒𝑎𝑛) 0.7577 0.7673 0.8283

mean&std (f1) 0.8022 0.8174 0.7333

quantile (f2) 0.8109 0.8254 0.7135
moment (f3) 0.8100 0.8254 0.7171

f1 ⊕ f2 0.8123 0.8269 0.7116
f3 ⊕ f2 0.8127 0.8270 0.7121

average-quality (f1, f2, f3) 0.8154 0.8305 0.7055

adopted in our work because of its low-complexity and re-
markable capability to handle high-dimensional data. PLSR
reduces the input high-dimensional features to several uncor-
related latent components and then performs least squares
regression on these components. There is only one parame-
ter 𝑝 (the number of components) in PLSR, which can be
determined by cross validation.

After the above investigations, we obtain our best proposal,
dubbed as Semantic Feature Aggregation metric using PLSR
(SFA-PLSR). It uses multiple overlapping patches to represent
images, and extracts features from the 𝑝𝑜𝑜𝑙5 layer of the pre-
trained ResNet-50 model, as well as averages the scores of
the mean&std aggregation, quantile aggregation and moment
aggregation.

5 EXPERIMENTS

In the following parts, we compare the performance of the pro-
posed SFA-PLSR method with the state-of-the-art NR-IQA
methods in both intra-database and inter-database scenar-
ios. As for the software platform to implement our proposed
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Table 2: Performance comparison on four databases. In each column, the best performance value is marked in
boldface and the second best performance value is underlined. The last column indicates the weighted-average
of SROCC over all four databases, where the weights are proportional to the database-sizes.

Category Method
BID [4] CLIVE [6] TID2008 [26] LIVE [31] Overall

SROCC PLCC RMSE SROCC PLCC RMSE SROCC SROCC SROCC

NR-IQA

of blur
images

MDWE [21] 0.3067 0.3538 1.1639 0.4313 0.4988 17.5025 0.8556 0.9188 0.4514
CPBD [24] 0.0202 0.2181 1.2166 0.3027 0.4026 18.4602 0.8723 0.9390 0.2945

FISH [38] 0.4736 0.4853 1.0894 0.4865 0.5380 17.0310 0.8737 0.9008 0.5323

S3 [37] 0.4109 0.4471 1.1177 0.4034 0.4864 17.6224 0.8650 0.9515 0.4686
LPC [10] 0.3150 0.4053 1.1408 0.1483 0.3490 18.9205 0.8805 0.9469 0.2922

MLV [1] 0.3169 0.3750 1.1561 0.3412 0.4076 18.4350 0.8977 0.9431 0.4058

ARISM [8] 0.0151 0.1929 1.2245 0.2427 0.3554 18.8947 0.8851 0.9585 0.2601
BIBLE [16] 0.3609 0.3923 1.1469 0.4260 0.5178 17.3007 0.9114 0.9638 0.4703

SPARISH [17] 0.3071 0.3555 1.1659 0.4015 0.4843 17.6702 0.9126 0.9638 0.4403
RISE [18] 0.5839 0.6017 0.9936 - - - 0.9218 0.9493 0.6833

Proposed SFA-PLSR 0.8269 0.8401 0.6854 0.8130 0.8313 11.3905 0.9098 0.9523 0.8321

General

purpose
NR-IQA

BRISQUE [22] 0.5795 0.5754 1.0624 0.5950 0.6195 16.0273 0.8737 0.8892 0.6258

Kang’s CNN [13] 0.4818 0.4977 1.1030 0.4964 0.5218 17.8567 0.9000 0.9429 0.5448

FRIQUEE [7] 0.7359 0.7477 0.8433 0.6916 0.7069 14.4244 0.9261 0.9515 0.7353
NRSL [19] 0.638 0.663 0.931 0.631 0.654 15.317 - 0.959 0.658

S-HOSA [32] 0.6869 0.6913 0.9112 0.7051 0.7241 14.0237 0.8729 0.9469 0.7258

The results of RISE and NRSL are from their original papers. The code of Kang’s CNN and S-HOSA are written by ourselves following
the detail of their papers, and the codes of other compared methods are from original authors.

method, we use the Caffe [12] framework to extract the fea-
tures from the pre-trained DCNN model. PLSR is performed
by the MATLAB function plsregress, and its parameter 𝑝 is
globally set to 10 based on the 5-fold cross-validation using
the training data of a single run (on BID), where p is selected
from the set {5, 10, 15, 20, 25, 30} for simplicity.

5.1 Performance Comparison

In this part, we compare the performance of SFA-PLSR
with ten existing (from classical to the most up to date)
NR-IQA methods of blur images, which are MDWE [21],
CPBD [24],FISH [38], S3 [37], LPC [10], MLV [1], ARISM [8],
BIBLE [16], SPARISH [17] and RISE [18]. Five remarkable
general-purpose NR-IQA methods, including BRISQUE [22],
Kang’s CNN [13], FRIQUEE [7], NRSL [19], and S-HOSA [32],
are also taken for comparison.

Table 2 reports the median SROCC, PLCC and RMSE
in 1000 runs on the four databases. We also report the
weighted-average SROCC over all four databases as the over-
all performance, where the weights are proportional to the
database-sizes (see the last column of Table 2). Among the
ten NR-IQA methods of blur images, the first nine methods
fail on the two realistic databases (SROCC< 0.5 on BID
and CLIVE) due to their neglect of global semantic infor-
mation, and RISE achieves the best performance on BID.
The proposed method SFA-PLSR significantly outperforms
others on BID and CLIVE in both prediction accuracy (PLC-
C, RMSE) and monotonicity (SROCC). As for the general
purpose NR-IQA methods, FRIQUEE and S-HOSA achieve
better performance on the realistic databases than the others.
Kang’s CNN [13] does not perform well because it assumes
that patch quality equals to image quality, which is not true

for these two realistic image datasets. On TID2008 and LIVE,
there are less than 30 images with different contents, which
is much smaller than BID (586) and CLIVE (1162), so the
role of semantic information is weakened and the impact
of low-level features is enhanced. Nevertheless, our method
SFA-PLSR still achieves comparable performance on the two
synthetic databases. In general, our method also achieves the
best overall performance.

5.2 Cross Dataset Evaluation

In this subsection, we test the generalization capability of
learning-based methods through cross dataset evaluation.
Since learning-based methods assume testing images and
training images have similar distribution, we conduct cross
dataset evaluation on realistic databases (BID and CLIVE)
and synthetic databases (TID2008 and LIVE), respectively.
It should be noted that CLIVE contains 383 images resized
from BID images, we exclude the 383 images from CLIVE in
cross dataset experiments.

We compare our method with RISE (the compared NR-
IQA method of blur images with the best overall perfor-
mance), FRIQUEE and S-HOSA (the best two general pur-
pose NR-IQA methods). The SROCC values are provided
in Table 3. It can be seen that our method performs better
than RISE, FRIQUEE and S-HOSA, which has demonstrated
the database independency and robustness of the proposed
SFA-PLSR method.

5.3 Impact of Training Ratio

In order to have an intuitive understanding of how the train-
ing ratio affects the performance of our methods, we also
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Table 3: SROCC values in cross dataset evaluation.

train → test RISE FRIQUEE S-HOSA Ours

BID → CLIVE - 0.3571 0.4767 0.5729
CLIVE → BID - 0.3886 0.3433 0.6838

TID2008 → LIVE 0.8638 0.8690 0.8950 0.9166
LIVE → TID2008 0.9138 0.8727 0.8612 0.9243

The results of cross dataset evaluation on the two realistic blur
datasets were not reported in the original paper of RISE.

conduct an experiment to test SFA-PLSR with different train-
ing ratios (from 10% to 90% with an increment step of 10%).
It is clearly shown from Figure 7 that with the increase of
training ratio, the performance values boost quickly when
the training ratio is smaller than 30%. We can see that even
if only 40% of images are used for training, the PLCC values
are still close to 0.8. This is helpful in real-world applications,
where relatively small amount of images are labeled.
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Figure 7: The PLCC of SFA-PLSR with different
training ratios.

5.4 2𝜎-Confidence Band and Failure Case

In this part, we further consider the prediction consistency
of the proposed method and FRIQUEE (the method among
the compared methods with the best overall performance).
The green regions shown in Figure 8(a), (b) are the 2𝜎-
confidence bands on BID. The scatter points outside the
band are regarded as outliers. It can be seen that FRIQUEE
has more outliers than our method SFA-PLSR. The median
values of outlier’s ratio (OR) in 1000 runs are 5.98%, 11.11%
for SFA-PLSR, FRIQUEE, respectively, which indicates that
our method is more consistent with human perception. The
outliers correspond the failure cases, and the worst case of
our method is shown in Figure 8(c). The picture suffered
from so complex distortions. To overcome this type of failure
cases, more clues should be considered, such as saturation
and ghosting.

6 CONCLUSION

In this paper, we propose a novel NR-IQA method for realistic
blur images, which is based on statistically aggregating the
high-level semantic features extracted from pre-trained deep
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Figure 8: (a) SFA-PLSR scores and 2𝜎-confidence
band on BID, (b) FRIQUEE scores and 2𝜎-
confidence band on BID, and (c) a failure case.

convolutional neural networks. The top performance and
strong generalization capability of our method are validated
by comparing with several state-of-the-art methods on two
realistic image databases (BID, CLIVE) and two synthetic
image databases (TID2008, LIVE). Experiments also show
that high-level semantics indeed play a more critical role
than low-level features in NR-IQA of realistic blur images.
In the future study, we will consider our methods in a coarse
to fine multi-scale framework, since object scale also plays a
role in human blur perception.
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