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Abstract—Video quality assessment (VQA) is very important
for many video processing applications, e.g., compression, archiv-
ing, restoration, and enhancement. An ideal video quality metric
should achieve consistency between video distortion prediction
and psychological perception of human visual system. Different
from the quality assessment of single images, motion information
and temporal distortion should be carefully considered for
VQA. Most of previous VQA algorithms deal with the motion
information through two ways: either incorporating motion
characteristics into a temporal weighting scheme to account
for their affects on the spatial distortion, or modeling the
temporal distortion and spatial distortion independently. Optical
flows need to be estimated in the two ways. In this paper,
we propose a different methodology to deal with the motion
information. Instead of explicitly calculating the optical flow
and independently modeling the temporal distortion, both the
spatial edge features and temporal motion characteristics are
accounted for by some structural features in the localized space-
time regions. We propose to represent the structural information
by two descriptors extracted from the 3-D structure tensors,
which are the largest eigenvalue as well as its corresponding
eigenvector. Experimental results on LIVE database and VQEG
FR-TV Phase-I database show that the proposed VQA metric
is competitive with state-of-the-art VQA metrics, while keeping
relatively low computing complexity.

Index Terms—3-D structure tensor, human visual system
(HVS), video quality assessment (VQA).

I. Introduction

OWING TO THE RAPID development of digital media
applications, digital video resources have been explo-

sively increasing in the past decades. Quality assessment of
these media resources is exceedingly important in the systems
of digital video acquisition, compression, transmission, and
storage. The most straightforward way to evaluate the quality
of a video is to use the quality scales directly rated by human
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observers. However, such subjective evaluations are quite time-
consuming and expensive, and could not be applied in real-
time scenarios and automatic systems. Therefore, there has
been an increasing demand for objective quality criteria and
metrics that are in agreement with the HVS’ judgment.

Objective video quality metrics can be generally classified
into three distinct categories according to the availability of the
reference video signals: full-reference (FR) metrics, reduced-
reference metrics, and no-reference metrics. The proposed
method as well as all the previous works investigated in this
paper belongs to the first category, in which both the reference
and distorted videos could be accessed by the algorithms. In
general, applications of FR video quality assessment (VQA)
metrics include but are not limited to [1]:

1) codec evaluation, specification, and acceptance testing;
2) in-service quality monitoring at the source;
3) remote destination quality monitoring when a copy of

the source is available;
4) quality measurement of a storage or transmission

system that utilizes video compression and decompres-
sion techniques.

Real-time processing capability of a FR VQA metric is quite
important for in-service quality monitoring at source end and
when it is used as the distortion metric in a practical rate-
distortion optimized video encoder. For other applications, low
complexity is also a desirable advantage.

The pixel-based FR metrics such as mean-squared error and
related peak signal-to-noise ratio (PSNR) have been the dom-
inant quantitative performance metrics in the field of signal
processing for several decades since they are simple to calcu-
late and have clear physical meanings in terms of Shannon in-
formation theory. However, it has been well acknowledged that
these pixel-based signal fidelity metrics do not always correlate
well with the HVS’ perception [2], [3]. For the perception of
the HVS, the visual information obtained from natural videos
is not reflected in the individual pixels, but in some high-order
statistics of the pixels in both the spatial domain and the tem-
poral domain, which represent the object’s structural features
and motion characteristics. In an effort to take into account the
features of the HVS, many FR approaches and methodologies
for VQA have been proposed in the past few years.

One obvious and simple way to perform VQA is to
implement quality evaluation on each individual frame and
then summate all the frame scores to obtain a composite
score. Many image quality metrics have been directly ex-
tended to VQA metrics using a frame-by-frame approach
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and a proper temporal weighting scheme. For example, a
quite representative quality metric of image quality assessment
(IQA) is the SSIM index proposed by Wang et al. [4], which
evaluates image quality by using some low level structural in-
formation such as mean, variance, and covariance of intensity
values of pixels in local patches. To produce a video quality
score based on the individual frame quality scores, a motion-
weighting model [5] is proposed to account for the fact that
the accuracy of visual perception is significantly reduced when
the speed of motion is large, and in [6], an alternate weighting
scheme based on human perception of motion information is
utilized. Although motion information is more or less explored
in these temporal weighting schemes, however, temporal dis-
tortions were not yet taken into account [8].

In recent years, temporal distortion has drawn more and
more attention from the VQA researchers. Video quality metric
(VQM) proposed by NTIA [7] is a popular VQA metric
that was included in the Recommendation ITU-T J.144 [1]
as a normative FR VQA model. This metric extracts seven
features from spatio-temporal blocks to compute the video
distortion. Frame differences are embedded into one feature
to account for the interaction between motion and spatial
distortion. In [9], temporal distortion is defined as temporal
evolution of the spatial distortion in a spatio-temporal “tube,”
since the perception of spatial distortions over time can be
largely modified by their temporal changes. Seshadrinathan
et al. proposed a motion-based video integrity evaluation
(MOVIE) index in [8], where they defined the temporal
distortion as the differences between the filter responses along
computed motion trajectories. A similar framework is pro-
posed in [10], which calculates the temporal distortion as the
SSIM index between motion compensated video patches. With
the block-based motion compensation, this method is quite
computationally efficient.

The methodologies of previous works that deal with
motion information could be roughly summarized in two
categories, either incorporating motion characteristics into the
weighting factors to account for their effects on the spatial
distortion, or modeling the temporal distortion and spatial
distortion independently. In many cases, it is difficult to
strictly distinguish the spatial distortion from the temporal
distortion. As the natural videos could be regarded as pixels
arranged along two spatial and one temporal dimensions, both
spatial structure features and temporal motion characteristics
are reflected in some high-order statistics in the localized
spacetime regions. The localized distortions would impair the
local statistics in both the spatial domain and the temporal
domain. For example, blurring effect would not only obscure
the HVS’ perception to the edge contours, but also introduce
a false perception of the localized motion. Other spatial
artifacts such as blocky and ringing artifacts would also
impair the HVS’ perception to the motion continuity.

In this paper, we propose a new methodology to deal
with the motion information. Instead of explicitly calculating
the optical flow and independently modeling distortions in
temporal and spatial domains, we extract structural descriptors
from the localized spacetime regions to account for spatial and
temporal distortions simultaneously. The largest eigenvalue

and its corresponding eigenvector of the 3-D structure tensors
are used as the descriptors because they can well represent
spatio-temporal structural features of the localized spacetime
regions. Spatial structure features as well as motion informa-
tion are implicitly represented in the descriptors. Furthermore,
a double saliency detection mechanism is incorporated into the
metric, making it efficient in prediction consistency and com-
puting complexity. This metric has a clear physical meaning
in accordance with visual perceptions of the HVS and is quite
computationally efficient. Experimental results demonstrate
that the proposed metric’s performance is competitive with
other state-of-the-art VQA metrics.

The remainder of this paper is organized as follows. In
Section II, we focus on the details of the proposed video
quality metric. Simulation results are presented in Section III.
Finally, Section IV concludes this paper.

II. Proposed Method

Structural information based image quality metrics [4],
[11]–[13] have been widely studied in recent years. The
motivation of these methods is that HVS is highly adapted
to extract the structural information from the visual scene.
Natural images are not random collections of pixels, but
have strong statistical dependencies between the pixels. HVS
understands natural images based on some low level structural
features, which implicitly present in the relationship between
the pixels. Accordingly, perceptible degradations of images
correspond to distortions of the structural features. Therefore,
the structural information based IQA metrics are devoted
to find the representative structural features which are in
consistence with HVS.

In this paper, we extend the insights of structural similarity
to spatio-temporal case. It is widely accepted that the basic
primitives and dominant features of natural images are the
edges [14]. Along the temporal axis, displacement of these
spatial primitives gives HVS the perception of motion. If we
regard the video as a pixel volume, the local spacetime region
would exhibit highly spatio-temporally structured characteris-
tics. As illustrated in Fig. 1, the edge contour of a moving
object would stretch out a plane along its motion trajectory in
the spatio-temporal space. As a result, the variation of the gray
value in the localized spacetime region would be oriented to a
certain orientation which we refer to as the primary direction.
Both the object edge �e and its motion trajectory �v would lie
in the plane which is orthogonal to this primary direction �p.
Perceptible degradations of edge and motion would alter the
energy distribution in the spacetime region.

There are many mathematical tools that could be used to de-
scribe these spatio-temporal structural features, such as steer-
able filters [15], least-square estimation [16], and anisotropic
diffusion [17]. In this paper, we leverage a powerful tool:
the 3-D structure tensor [18], in which the spatio-temporal
oriented structural information is implicitly embedded into a
local gradient based matrix.

A. Introduction of 3-D Structure Tensor

The structure tensor, since first introduced by Harris [19] in
the task of corner and edge detection, has proven its power in
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Fig. 1. Illustration of the local spatio-temporal structure features.

many applications like texture analysis [20], diffusion filtering
[21], optical flow estimation and analysis [22], [23], and video
segmentation [24]. The structure tensor is a matrix derived
from the local gradients, whose eigenvectors and eigenvalues
summarize the predominant directions of the energies in a
specified neighborhood of a point, and the coherency of those
directions. In particular, for the 3-D video data, the 3-D
structure tensor at point p has the following mathematical
form:

S(p) = ∇I(p) · ∇I(p)T

=

⎡
⎣

∑
W I2

x (p)
∑

W Ix(p) · Iy(p)
∑

W Ix(p) · It(p)∑
W Ix(p) · Iy(p)

∑
W I2

y (p)
∑

W Iy(p) · It(p)∑
W Ix(p) · It(p)

∑
W Iy(p) · It(p)

∑
W I2

t (p)

⎤
⎦

(1)

where ∇ = (∂x, ∂y, ∂t) denotes partial derivatives along x, y,
and t directions, respectively, and W is a local integration
window. The 3-D structure tensor is a 3×3 symmetric matrix
which contains six independent components. The matrix has
two important advantages for structure analysis [23]. First, the
matrix representation of the gradients allows the integration
of information from a local neighborhood without cancelation
effects which would appear if gradients with opposite orienta-
tion were integrated directly. Second, the integration of local
orientation in a window yields robustness against noise, and
creates additional information such as coherence.

The localized spatio-temporal structural information is con-
tained in the eigenvectors and eigenvalues of this matrix, which
will be further analyzed in the next section.

B. Structural Descriptors Extracted From the 3-D Structure
Tensor

The importance of this matrix stems from the fact that its
eigenvalues and the corresponding eigenvectors summarize the
distribution of the energy within the local window centered at
p. After performing eigenvalue decomposition of the 3 × 3
matrix, the 3-D structure tensor can be expressed as follows:

S(p) = λ1e1e
T
1 + λ2e2e

T
2 + λ3e3e

T
3 (2)

where λ1 ≥ λ2 ≥ λ3 ≥ 0 are the three eigenvalues sorted
in descending order, and e1, e2, e3 are their corresponding
eigenvectors.

Fig. 2. Sobel kernel for t direction.

The eigenvectors represent the local orientations along
which the local gray value variation is aligned, while their
corresponding eigenvalues denote the variations along these di-
rections. From the perspective of principal component analysis
[25], the eigenvector e1 corresponds to the primary direction
in Fig. 1, which incurs the largest variance of the localized
spacetime region, while the largest eigenvalue λ1 reveals the
degree of data variation along this direction. In another word,
they represent the “strength” and the orientation of the 3-D
structure. Accordingly, they are the most representative and
efficient descriptors to account for structural distortion. As
analyzed above, perceptible degradations of edge and motion
correspond to structural distortion of the spacetime region,
thus they could also be reflected in the alteration of these
two descriptors.

Edge sharpness is usually measured by the gradient variation
orthogonal to the edge [26], which is in consistence with the
physical meaning of the eigenvalue. Blurring an edge would
lead to decrease of the eigenvalue.

Another typical distortion introduced by block-based com-
pression is the “blocky” artifact. This type of distortion in-
troduces nonexisting edges in the spatial domain, obscuring
the HVS’ perception of the localized motion. The structural
feature in the localized spacetime region would be largely
changed by such an artifact but also reflected in the two
descriptors.

As for the temporal distortion introduced by packet loss,
which gives us the feeling of flickering, the abrupt change
between adjacent frames would turn the direction of the
eigenvector toward the temporal axis, and the corresponding
eigenvalue altered as well.

C. Proposed Algorithm

The proposed VQA metric is performed only on the “Y”
component of the video sequences. The first step of the
algorithm is to collect gradient information. In this paper, we
apply the 3-D Sobel kernels to calculate the local gradients.
Fig. 2 shows the kernel for calculating the gradients along
time direction. This is a 3 × 3 × 3 matrix, which means for
the pixels in current frame, we need two adjacent frames to
calculate their gradients.

The kernels for x and y directions could be obtained
by rotating this kernel by 90° along the y-axis and x-axis,
respectively.

After the pixel gradients are obtained, we need to determine
which pixels need to be processed. Recently, visual attention
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has been widely investigated in VQA studies [27], [28]. Since
human attention is not allocated equally to all regions in the
visual field, but focused on certain regions known as salient
regions [29], it is believed that distortion in these salient re-
gions plays a crucial rule in the HVS’ judgment on the overall
quality of the video. Such an attention related mechanism is in-
corporated into our algorithm. In contrast with previous works
which mostly perform saliency detection only on the original
video, we detect salient pixels in both reference video and dis-
torted video, and the final selected pixels for processing are the
union of the salient pixels in original video and distorted video.
This procedure is based on the consideration that the distortion
process may introduce some salient artifacts in certain regions
that did not draw the HVS’ attention in the original video.
However, these salient artifacts would greatly affect the HVS’
judgment on the video quality. Fig. 3 illustrates the double
saliency detection process. In the original video, the yellow
pixels are the detected salient pixels. In the distorted video,
the green pixels are the detected salient pixels. As a result, the
pixels which require similarity analysis are the red pixels.

As to the saliency detection method, an efficient and fast
algorithm is desired. Considering HVS is sensitive to edge
distortion, ITU-T J.144 recommended a FR video metric,
EPSNR, which applies thresholding to the spatial gradient
magnitude to find edge pixels, and then calculate PSNR only
on these edge pixels. In this paper, we consider that HVS is
sensitive to edges, motion regions and abruptly emerged arti-
facts, where grayvalues of pixels usually change dramatically.
Therefore, we judge a pixel is a salient pixel if its spatio-
temporal gradient magnitude is above a certain threshold
in either original video or distorted video. Discarding the
nonsalient pixels not only improves the accuracy of quality
evaluation, but also saves up much computing time, which is
quite important for a real-time VQA metric.

When the salient pixels have been selected, we construct
a pair of 3-D structure tensors for each salient pixel in both
the reference video and the distorted video, and then perform
eigenvalue decomposition on both. We utilize the widely used
Jacobi method [30] in this paper. The largest eigenvalues and
their corresponding eigenvectors are retained as the descriptors
which are further used to calculate the quality score at this
pixel according to the following formula:

m =
2 · lr · ld

l2r + l2d
× cos < er, ed > (3)

where lr and ld denote the largest eigenvalues of the structure
tensors in the reference video and distorted video, while er

and ed denote their corresponding eigenvectors.
The first term measures the similarity between the variances

along their primary directions in the localized spacetime
region, and the second term measures the divergence of their
primary directions. Both terms and their product lie in the
range of [0, 1]. This score indicates the degree of structural
similarity between the corresponding localized spacetime re-
gions at the same position, where a higher value indicates a
better quality.

Finally, all of the salient pixel scores are averaged to give
a final video quality index.

Fig. 3. Illustration for double saliency detection.

The specific procedure of the proposed VQA algorithm is
given in Table I, and Fig. 4 illustrates the flow chart of the
algorithm. Furthermore, we illustrate the performance of the
proposed method by showing the saliency maps, eigenvalue
maps and quality maps in Fig. 5. We select a pair of frames
from one of the test sequences in the LIVE database. The
corresponding video of (B) is generated by H.264 compression
and network packet loss. To give a better visual effect, all
the nonsalient pixels are dyed green. It is evident that the
generated saliency maps of original video and distorted video
are different. Some salient artifacts emerge in the distorted
frame while these regions do not draw the HVS’ attention
in the original frame. These artifact regions have different
responses in the eigenvalue maps and correspond to lower
values in the final quality map.

III. Simulation Results

To evaluate the performance of the proposed VQA metric,
we test it alongside other state-of-the-art VQA metrics on
two publicly-accessible databases, namely the LIVE Video
Quality Database [31], and the VQEG Phase I FR-TV test
dataset [32]. The LIVE Video Quality Database consists of 10
reference videos with 15 distortions each, to give a total of 150
distorted videos, and the VQEG database contains 20 reference
sequences and 16 distorted versions of each reference, for a
total of 320 videos. Subjective scores (DMOS) were recorded
for all test sequences in both datasets. The main difference
between the two databases is in the types of distortions. VQEG
Phase I dataset is largely comprised of compressed videos,
while sequences in LIVE Video Quality Database are distorted
by four different distortion processes—MPEG-2 compression,
H.264 compression, and simulated transmission of H.264
compressed bitstreams through error-prone IP networks and
through error-prone wireless networks [31]. As a result, the
LIVE Video Quality Database contains more types of distor-
tions, especially spatio-temporally localized distortions.

One thing that should be noticed is that there are two
distortion types in the VQEG database (HRC 8 and 9), each
containing two different subjective scores according to whether
these sequences were viewed along with “high” or “low”
quality videos [33]. As same as the test condition in [8], we
used the scores assigned in the “low” quality regime as the
subjective scores for these videos. Since most of the sequences
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Fig. 4. Block diagram of the proposed algorithm.

TABLE I

Procedure of the Proposed VQA Algorithm

in VQEG database are in interlacing format, the proposed
VQA algorithm is only applied on the top fields.

A. Performance Comparison

For comparison, these same sets of videos were evaluated
by the following VQA metrics.

1) PSNR: the classic pixel-based VQA metric which is
always used as baseline for performance evaluation of
the VQA algorithms.

2) VQM: a widely used VQA metric proposed by NTIA
[7], which was recommended by ITU J.144.

3) SW-SSIM: frame based SSIM with motion associated
weighting [6].

4) MOVIE: the representative optical flow based VQA
metric proposed in [8].

5) MC-SSIM: motion compensated SSIM which is pro-
posed in [10].

Additionally, both of the databases are evaluated by the Tek-
tronix PQA500 Picture Quality Analyzer, which is a leading
video quality assessment product for industry application. Two
indicators, namely PQR and DMOS exported by PQA500 are
used for comparison.

Parameter configuration of the proposed metric is discussed
in the next subsection.

TABLE II

Performance Comparison on the LIVE Database

Methods Spearman CC Pearson CC
MOVIE 0.786 0.810
VQM 0.702 0.723
SW-SSIM 0.585 0.596
MC-SSIM 0.679 0.698
PSNR 0.368 0.404
PQR (by PQA500) 0.695 0.712
DMOS (by PQA500) 0.695 0.711
Prop 0.779 0.778

As for performance criteria, Pearson correlation coefficient
(CC) and Spearman rank order correlation coefficient are used
as performance indicator. For the indicator of Pearson corre-
lation coefficient, a nonlinear mapping between the objective
scores and subjective quality ratings was used according to
VQEG recommendations [33]. In this paper, the mapping
function chosen for regression for each of the metrics was
a 4-parameter logistic function

f (x) =
τ1 − τ2

1 + exp(− x−τ3
τ4

)
+ τ2. (4)
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Fig. 5. Illustration of the performance of the proposed metric. (a) Frame from reference video. (b) Corresponding frame from distorted video. (c) Selected
salient pixels of (a). (d) Selected salient pixels of (b). (e) Selected salient pixels by the double saliency detection. (f) Largest eigenvalues of the salient pixels
in (a). (g) Largest eigenvalues of the salient pixels in (b). (h) Quality map of the salient pixels. Dark regions correspond to regions of poor quality.
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TABLE III

Performance Comparison on the VQEG Database

Methods Spearman CC Pearson CC
MOVIE 0.833 0.821
VQM 0.781 0.782
SW-SSIM 0.837 0.810
MC-SSIM 0.833 0.833
PSNR 0.786 0.779
PQR (by PQA500) 0.814 0.814
DMOS (by PQA500) 0.815 0.814
Prop 0.832 0.822

TABLE IV

LCC Scores of VQA Metrics on Each Kind of Distortion

in LIVE Database

Methods Wireless IP H.264 MPEG2
PSNR 0.4675 0.4108 0.4385 0.3856
SW-SSIM 0.5867 0.5587 0.7206 0.6270
VQM 0.7325 0.6480 0.6459 0.7860

PQR (by PQA500) 0.6464 0.7300 0.7455 0.6456
DMOS (by PQA500) 0.6426 0.7296 0.7427 0.6445
Prop 0.7544 0.8072 0.8298 0.6624

Fig. 6. Scatter plot of subjective DMOS against predicted DMOS by the
proposed metric.

Table II shows the results on the LIVE Video Quality
Database. Test results on the VQEG database are given in
Table III. Furthermore, Table IV shows the results on each
kind of distortion in LIVE database, which demonstrate that
the proposed metric is rather robust to various types of video
distortions.

It is impressive that the proposed metric significantly out-
performs other metrics on the LIVE database according to
the two indicators, and is competitive with the MOVIE index.
The PSNR performs especially poorly on this database. On the
VQEG database, the performance of the proposed metric is in-
distinguishable from other leading metrics, such as the MOVIE
index, the SW-SSIM metric and the MC-SSIM metric. One im-
portant reason for the significant performance gap on the LIVE
database is that it contains many spatio-temporally localized
distortions that are introduced by packet loss. Compared to
the blurring and blocky artifacts introduced by compression,
the HVS is usually more intolerable to this type of distortion.

TABLE V

Performance Comparison Between Double Saliency Detection

and Single Saliency Detection

Mechanism Spearman CC Pearson CC
Double detection 0.779 0.778
Single detection 0.742 0.739

However, conventional distortion models, especially the pixel
based models are usually incapable to account for this type
of distortion. The experimental results also demonstrate that
without explicitly calculating the optical flows, the extracted
spatio-temporal structural descriptors could well account for
these spatio-temporally localized structural distortions.

Fig. 6 shows the scatter plots of the DMOS (scaled to the
full range of 1–100) against the objective prediction (after
logistic regression) by the proposed metric (on the LIVE
database). From the scatter plots graph we could conjecture
that the proposed metric performs well from low quality cases
to high quality cases.

B. Complexity Analysis

An important superiority of our algorithm is its complexity.
The computation cost of the algorithm mainly concentrates
on three steps: gradients calculation, 3-D structure tensor
construction, and eigenvalue decomposition of these tensors.

It can easily be shown that the computational complexity of
Sobel gradients computation is O(MN 3

Sobel), where M is the
number of pixels in one frame and NSobel is the kernel size of
the Sobel operator, which is 3 in our work. The computational
complexity of 3-D structure tensor construction is O(M ′N2

W ),
where M ′ is the number of selected saliency pixels in one
frame, and NW is the window size for gradients integration,
whose configuration will be discussed later. Finally, eigenvalue
decomposition of the tensors has a computational complex-
ity of O(M ′N3

T ), where NT is the dimension of the tensor
matrix, which is 3. Therefore, the total time complexity is
O(MN 3

Sobel+M ′(N2
W+N3

T )).
There are mainly two parameters that affect the performance

and computational complexity of the algorithm: the integration
windowsize NW and the saliency threshold ε.

For the integration windowsize NW , we tried 3 × 3, 5 × 5,
7 × 7, 9 × 9 and 11 × 11. The performance is almost the same
at 3 × 3, 5 × 5 and 7 × 7 and slightly declined at 9 × 9 and
11 × 11. This is because that too large integration window
would mask some small-scale distortions and tend to rate a
higher similarity. Taking the computational complexity into
account, we recommend to set the integration window size as
3×3. One thing that should be noted is although the integration
window for the structure tensor is 3×3, however, the elements
of the matrix, the gradients, are calculated by a 3×3×3 Sobel
operator. That is to say, the support region of the data analysis
is actually 5 × 5 × 3. As illustrated in Fig. 7, for the central
pixel in the middle frame, we need gradients of nine pixels
in the blue square to construct its structure tensor. For each
pixel in the blue square (we take the up-left pixel as example),
spatial and temporal gradients are calculated using the 3×3×3
pixels in the green squares. Therefore, the descriptors describe
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TABLE VI

Summary of Time Complexity of the Proposed Algorithm and Optical Flow Calculating Algorithms

Algorithm Proposed VQA algorithm Optical flow algorithms
Phase based method Block matching method LK method

Time
complexity

O(MN 3
Sobel+M ′(N 2

W +N 3
T )) O(MV 3

max) O(MV 2
max) O(M(n2NP + N3

P ))

Fig. 7. Illustration for the support region of the structural descriptors. For the
central pixel in the middle frame, pixels in the blue square are used to construct
the structure tensor. Pixels in the green squares are used to calculate spatial
and temporal gradients of the up-left pixel in the blue square. Therefore,
structural descriptors of the central pixel in the middle frame summarize the
energy distribution within the whole 5 × 5 × 3 region in the figure.

Fig. 8. Performance of the metric versus different thresholds on the LIVE
database.

the energy distribution within this 5×5×3 region. This size is
capable to reflect the structural characteristics of natural scene
primitives as well as the structural distortion cased by block
based video compression and processing.

The threshold value ε for saliency detection plays an impor-
tant role for both performance and computational complexity.
An appropriate threshold value can not only extract the HVS-
sensitive regions of the video, but also maintain the computa-
tional complexity at a proper level.

Fig. 8 illustrates the performance of the metric versus
different thresholds in terms of Spearman CC coefficient (on
the LIVE database). We can see the metric gives the best
performance when ε is set around 1000. When ε = 0, all
pixels are included in the evaluation, and the performance is
quite poor. The efficiency of the metric will also be decreased
as the threshold increases, since some important video details
may be missed.

Table V shows the performance comparison between the
mechanisms of double saliency detection and single saliency
detection (ε = 1000) on LIVE database. The efficiency of the
proposed method is demonstrated. With this threshold, the M ′

is averagely reduced to 1/10 of M in the LIVE database. As
a result, computing cost is largely cut down.

As for the memory requirement, only three frames need to
be kept during processing, and intermediate results will occupy
only a little space.

In comparison, we will analyze the computational complex-
ity of other optical flow based VQA algorithms. Generally,
the most time-consuming part of these algorithms is the
calculation of optical flow. Therefore, here we only take the
complexity of optical flow calculation as a comparison. As
we know, there are quite a lot of algorithms for optical flow
calculation and algorithms with higher accuracy usually needs
higher computing cost. The MOVIE index [8] utilized the
phase based method [34] proposed by Fleet and Jepson, which
is one of the most accurate methods but with the highest
computing cost. Time complexity of this method is O(MV 3

max)
[35], where Vmax is the maximum motion velocity with the
magnitude of dozens. The motion based SSIM [10] adopts
the simplest block-matching based motion estimation method,
whose complexity is O(MV 2

max). However, this method could
not generate dense motion field and is unable to handle
complex motion such as rotating and deforming. Another
famous method is the gradient based LK method [36], which
has a good tradeoff between performance and complexity. Its
complexity is O(M(n2NP +N3

P )) [37], where n is the size of a
spatial template and NP is the number of warping parameters.
Usually n is set as 5, and 6-parameter affine model is used for
warping. Note that 3-D structure tensor is implicitly present
in this method, which also reflects the close relationship
between the 3-D structure tensor and video motion charac-
teristics. See Table VI for a summary of the algorithms’ time
complexity.

We compare the processing speed of the proposed algorithm
with MOVIE index on the following computer: MS Windows
XP professional, Inter Core2 CPU E6600 at 2.4 GHz, 3 GB
of RAM. The source code is written in C, without any op-
timization through parallel processing or assembly language,
such as MMX or SSE2 instruction. Code of MOVIE index is
downloaded from [38]. The processing speed of the proposed
algorithm achieves 10 frames/s on the LIVE database, while
running time of the MOVIE index is about 3000 times slower.

From the above analysis, we could see that the proposed
algorithm has a significant superiority in terms of computa-
tional complexity, which makes it more practical in realtime
applications.
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IV. Conclusion

In this paper, a novel video quality metric based on local
spatio-temporal structural characteristic was proposed. Video
quality was evaluated by computing the difference between
two descriptors which are extracted from local spatio-temporal
cubes. Experimental results on the LIVE database and VQEG
FRTV Phase I database showed that the proposed metric
outperforms conventional quality metrics such as PSNR, SSIM
and performs competitively with MOVIE metric. Moreover,
the experimental results also showed that the proposed metric
was rather robust to various types of video distortions and the
performance was not parameter-dependent.
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