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Abstract. The Transformer architecture has demonstrated remarkable
ability in modeling global relationships. However, it presents a signifi-
cant computational challenge when processing high-dimensional medical
images. Mamba, as a State Space Model (SSM), has recently emerged as
a notable approach for modeling long-range dependencies in sequential
data, excelling in the field of natural language processing with its remark-
able memory efficiency and computational speed. Inspired by its suc-
cess, we introduce SegMamba, a novel 3D medical image Segmentation
Mamba model, designed to effectively capture long-range dependencies
within whole-volume features at every scale. Our SegMamba, in contrast
to Transformer-based methods, excels in whole-volume feature modeling,
maintaining superior processing speed, even with volume features at a
resolution of 64 × 64 × 64 (The sequential length is about 260k). Com-
prehensive experiments on three datasets demonstrate the effectiveness
and efficiency of our SegMamba. Additionally, to facilitate research in
3D colorectal cancer (CRC) segmentation, we contribute a new large-
scale dataset (named CRC-500). The code for SegMamba and infor-
mation about CRC-500 dataset are available at: https://github.com/ge-
xing/SegMamba.

Keywords: State space model · Mamba · Long-range sequential mod-
eling · 3D medical image segmentation.

1 Introduction

3D medical image segmentation is is an essential task. Accurate segmentation
results can reduce the diagnostic burden of diseases for doctors. To improve the
segmentation performance, extending model’s receptive field is a critical aspect
in this task. Conventional convolutional neural networks (CNNs) are not very
effective at extracting large range information from high-resolution 3D medical
images. Hence, the large-kernel convolution [16] is proposed to model a broader
range of features. 3D UX-Net [12] introduces a new architecture, utilizing an
convolution block with a large kernel size (7×7×7) to facilitate larger receptive

ar
X

iv
:2

40
1.

13
56

0v
3 

 [
cs

.C
V

] 
 2

5 
Fe

b 
20

24

https://github.com/ge-xing/SegMamba
https://github.com/ge-xing/SegMamba


2 Zhaohu Xing, Tian Ye, Yijun Yang, Guang Liu, and Lei Zhu (�)

fields. However, CNN-based methods struggle to model global relationships due
to the locality of the convolution layer.

Recently, the transformer architecture [22,2,23], utilizing a self-attention mod-
ule to extract global information, has been extensively explored for 3D medical
image segmentation. UNETR [7] employs the Vision Transformer (ViT) [3] as its
encoder to learn contextual information, which is then merged with a CNN-based
decoder via skip connections at multiple resolutions. SwinUNETR [6] leverages
the SwinTransformer [15] as the encoder to extract multi-scale features. It also
designs a multi-scale decoder to fuse features from each encoder stage, achieving
promising results in 3D medical image segmentation. However, the typically high
resolution of 3D medical images can result in significant computational burdens
and reduced speed performance for transformer-based methods.

To overcome the challenges of long sequence modeling, Mamba [5], which
originates from state space models (SSMs) [10], is designed to model long-range
dependencies and enhance the efficiency of training and inference through a
selection mechanism and a hardware-aware algorithm. Numerous studies have
explored the applications of Mamba in computer vision (CV). U-Mamba [17]
integrates the Mamba layer into the encoder of nnUNet [9] to enhance gen-
eral medical image segmentation. Meanwhile, Vision Mamba [24] introduces the
Vim block, which incorporates bidirectional SSM for data-dependent global vi-
sual context modeling and position embeddings for location-aware visual under-
standing. Additionally, VMamba [14] designs a CSM module to bridge the gap
between 1-D array scanning and 2-D plain traversing. However, these methods
are not specifically designed for 3D medical image segmentation.

In this paper, we introduce SegMamba, a novel architecture that combines the
U-shape structure with Mamba for modeling the whole volume global features
at various scales. To our knowledge, this is the first method utilizing Mamba
specifically for 3D medical image segmentation. To facilitate the use of Mamba
on high-dimensional medical images, we design a tri-orientated Mamba (ToM)
module to enhance the sequential modeling of 3D features from three direc-
tions. Subsequently, to effectively model the spatial features, we further design a
gated spatial convolution (GSC) module to enhance the feature representation
in the spatial dimension before each ToM module. Moreover, datasets play an
important role in 3D medical imaging. We propose a new large-scale dataset
for 3D colorectal cancer segmentation called CRC-500, which consists of 500 3D
computed tomography (CT) scans with expert annotations. The dataset will be
made available upon request for research purposes. SegMamba exhibits a remark-
able capability to model long-range dependencies within volumetric data, while
maintaining outstanding inference efficiency, compared to traditional CNN-based
and transformer-based methods. Extensive experiments demonstrate the effec-
tiveness of our method.

2 Colorectal Cancer Segmentation Dataset (CRC-500)
Necessity for CRC-500 Dataset Colorectal cancer (CRC) is the third most
common cancer worldwide among men and women, the second leading cause
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Fig. 1. The data visualization for CRC-500 dataset.

Table 1. Comparison between related datasets and our CRC-500 dataset.

Related Datasets Rectal Cancer Colon Cancer Volume Number Open-sourced

3D RU-Net [19] ! ! 64 %

MSDenseNet [12] ! ! 43 %

MSD [21] % ! 190 !

Zhang et al. [7] ! ! 388 %

Our CRC-500 ! ! 500 !

of death related to cancer, and the primary cause of death in gastrointestinal
cancer [4]. Using deep learning methods to detect the cancer region can assist
doctors in making more accurate diagnoses. However, as shown in Table 1, the
current 3D colorectal cancer segmentation datasets are small in size. Moreover,
only the MSD dataset is publicly available, but it lacks data on rectal cancer. To
facilitate research in the 3D colorectal cancer segmentation field, we contribute
a new large-scale dataset (named CRC-500). This dataset consists of 500 3D
colorectal volumes with corresponding precise annotations from experts. Fig. 1
presents examples in 2D format from our proposed CRC-500 dataset. The details
of our CRC-500 will be discussed below.

Dataset Construct The CT scans were acquired from January 2008 to April
2020. All sensitive patient information has been removed. Each volume was an-
notated by a professional doctor and calibrated by another professional doctor.

Dataset Analysis All the CT scans share the same in-plane dimension of 512×
512, and the dimension along the z-axis ranges from 94 to 238, with a median of
166. The in-plane spacing ranges from 0.685 × 0.685 mm to 0.925 × 0.925 mm,
with a median of 0.826 × 0.826 mm, and the z-axis spacing is from 3.0 mm to
3.75 mm, with a median of 3.75 mm.

3 Method

SegMamba mainly consists of three components: 1) the 3D feature encoder with
multiple tri-orientated spatial Mamba blocks to model the global information at
different scales, 2) the 3D decoder based on the convolution layer for predicting
segmentation results, and 3) the skip-connections to connect the global multi-
scale features to the decoder for feature reuse. Fig. 2 illustrates the overview
of the proposed SegMamba. We further describe the details of the encoder and
decoder in this section.
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Fig. 2. The overview of the proposed SegMamba.

3.1 Tri-orientated Spatial Mamba (TSMamba) Block

Modeling global features and multi-scale features is critically important for 3D
medical image segmentation. Transformer architectures can extract global in-
formation, but it incurs a significant computational burden when dealing with
overly long feature sequences. To reduce the sequence length, methods based on
Transformer architectures, such as UNETR, directly down-sample the 3D input
with a resolution of D ×H ×W to D

16 × H
16 × W

16 . However, this approach lim-
its the ability to encode multi-scale features, which are essential for predicting
segmentation results via the decoder. To overcome this limitation, we design a
TSMamba block to enable both multi-scale and global feature modeling while
maintains a high efficiency during training and inference.

As illustrated in Fig. 2, the encoder consists of a stem layer and multiple
TSMamba blocks. For the stem layer, we employ a depth-wise convolution with
a large kernel size of 7×7×7, with a padding of 3×3×3, and a stride of 2×2×2.
Given a 3D input volume I ∈ RC×D×H×W , where C denotes the number of input
channels, the first scale feature z0 ∈ R48×D

2 ×H
2 ×W

2 is extracted by the stem layer.
Then, z0 is fed through each TSMamba block and corresponding down-sampling
layers. For the mth TSMamba block, the computation process can be defined as:

ẑlm = GSC(zlm), z̃lm = ToM
(
LN

(
ẑlm

))
+ ẑlm, zl+1

m = MLP
(
LN

(
z̃lm

))
+ z̃lm,

(1)
where the GSC and ToM denote the proposed gated spatial convolution module
and tri-orientated Mamba module, respectively, which will be discussed next.
l ∈ {0, 1, ..., Nm − 1}, LN denotes the layer normalization, and MLP represents
the multiple layers perception layer to enrich the feature representation.
Gated Spatial Convolution (GSC) The Mamba layer models the feature de-
pendencies by flattening the 3D features into a 1D sequence. Hence, to extract
the spatial relationship before the Mamba layer, we design a gated spatial convo-
lution (GSC) module. As shown in Fig. 3 (a), the input 3D features are fed into
two convolution blocks (a convolution block contains a norm, a convolution, and
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Fig. 3. (a) The gated spatial convolution. (b) The tri-orientated Mamba.

a nonlinear layer), with the convolution kernel sizes being 3×3×3 and 1×1×1.
Then these two features are multiplied pixel-by-pixel to control the information
transmission similar to the gate mechanism [13]. Finally, a convolution block is
used to further fuse the features, while a residual connection is utilized to reuse
the input features.

GSC(z) = z + C3×3×3(C3×3×3(z) · C1×1×1(z)), (2)

where z denotes the input 3D features and C denotes the convolution block.
Tri-orientated Mamba (ToM) In TSMamba block, to effectively model the
global information of high-dimensional features, we design a tri-orientated Mamba
module that computes the feature dependencies from three directions. As shown
in Fig. 3 (b), we flatten the 3D input features into three sequences to perform
the corresponding feature interaction and obtain the fused 3D features.

ToM(z) = Mamba(zf ) +Mamba(zr) +Mamba(zs), (3)

where Mamba is the Mamba layer to model the global information within a
sequence, f denotes forward direction, r denotes reverse direction, and s denotes
inter-slice direction.

3.2 Decoder
Our feature encoder, based on the TSMamba block, extracts the multi-scale fea-
tures. Following many previous studies [12,6,7], we utilize a CNN-based decoder
and a skip connections for predicting the segmentation results.

4 Experiments
4.1 Other Dataset

BraTS2023 dataset The BraTS2023 dataset [18,1,11] contains a total of 1,251
3D brain MRI volumes. Each volume includes four modalities (namely T1, T1Gd,
T2, T2-FLAIR) and three segmentation targets (WT: Whole Tumor, ET: En-
hancing Tumor, TC: Tumor Core).
AIIB2023 dataset The AIIB2023 dataset [20], the first open challenge and
publicly available dataset for airway segmentation. The released data include
120 high-resolution computerized tomography (HRCT) scans with precise expert
annotations, providing the first airway reference for fibrotic lung disease.
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Table 2. Quantitative comparison on BraTS2023 and AIIB2023 datasets. The bold
value denotes the best performance.

Methods
BraTS2023 AIIB2023

WT TC ET Avg Airway Tree
Dice ↑ HD95 ↓ Dice ↑ HD95 ↓ Dice ↑ HD95 ↓ Dice ↑ HD95 ↓ IoU ↑ DLR ↑ DBR ↑

SegresNet [19] 92.02 4.07 89.10 4.08 83.66 3.88 88.26 4.01 87.49 65.07 53.91
UX-Net [12] 93.13 4.56 90.03 5.68 85.91 4.19 89.69 4.81 87.55 65.56 54.04

MedNeXt [21] 92.41 4.98 87.75 4.67 83.96 4.51 88.04 4.72 85.81 57.43 47.34

UNETR [7] 92.19 6.17 86.39 5.29 84.48 5.03 87.68 5.49 83.22 48.03 38.73
SwinUNETR [6] 92.71 5.22 87.79 4.42 84.21 4.48 88.23 4.70 87.11 63.31 52.15

SwinUNETR-V2 [8] 93.35 5.01 89.65 4.41 85.17 4.41 89.39 4.51 87.51 64.68 53.19

Ours 93.61 3.37 92.65 3.85 87.71 3.48 91.32 3.56 88.59 70.21 61.33

Table 3. Quantitative comparison on CRC-
500 dataset.

Methods Dice ↑ HD95 ↓

SegresNet [19] 46.10 34.97
UX-Net [12] 45.73 49.73

MedNeXt [21] 35.93 52.54
UNETR [7] 33.70 61.51

SwinUNETR [6] 38.36 55.05
SwinUNETR-V2 [8] 41.76 58.05

Ours 48.02 30.89

Table 4. Ablation study for different mod-
ules on CRC-500 dataset. LC denotes large-
kernel convolution layer.

Methods Modules
Dice ↑ HD95 ↓

LC GSC ToM

UX-Net [12] ! 45.73 49.73
M1 45.34 43.01
M2 ! 46.65 37.01
M3 ! 47.22 33.32

Ours ! ! 48.02 30.89

4.2 Implementation Details

Our model is implemented in Pytorch 2.0.1-cuda11.7 and Monai 1.2.0. During
training, we use a random crop size of 128 × 128 × 128 and a batch size of 2
per GPU for each dataset. We use cross-entropy loss for all experiments and an
SGD optimizer along with a polynomial learning rate scheduler (initial learning
rate of 1e-2, a decay of 1e-5). We run 1000 epochs for all datasets and adopt
the following data augmentations: additive brightness, gamma, rotation, scal-
ing, mirror, and elastic deformation. All experiments are conducted on a cloud
computing platform with four NVIDIA A100 GPUs. For each dataset, we ran-
domly allocate 70% of the 3D volumes for training, 10% for validation, and the
remaining 20% for testing.

4.3 Comparison with SOTA Methods

We compare SegMamba against six SOTA segmentation methods, including
three CNN-based methods (SegresNet [19], UX-Net [12], MedNeXt [21]), and
three transformer-based methods ( UNETR [7], SwinUNETR [6], and SwinUNETR-
V2 [8]). For a fair comparison, we utilize public implementations of these methods
to retrain their networks, thereby generating their best segmentation results. The
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Fig. 4. Visual comparisons of proposed SegMamba and other state-of-the-art methods.
Swin denotes SwinUNETR and Swinv2 denotes SwinUNETR-V2.

Table 5. Ablation study for different global modeling modules. TM denotes training
memory, IM denotes inference memory, IT denotes inference time, and OOM represents
out of memory.

Methods Core
module

Input
resolution

Sequence
length

TM
(M)

IM
(M)

IT
(case/s) Is Global

M4 Large-kernel
convolution 1283 262144 18852 5776 1.92 %

M5 SwinTransformer 1283 262144 34000 9480 1.68 %

M6 Self-attention 1283 262144 OOM - - !

Ours TSMamba 1283 262144 17976 6279 1.51 !

Dice score (Dice) and 95% Hausdorff Distance (HD95) are adopted for quanti-
tative comparison on BraTS2023 and CCR-500 datasets. Following [20], the In-
tersection over union (IoU), Detected length ratio (DLR), and Detected branch
ratio (DBR) are adopted on AIIB2023 dataset.
BraTS2023 The segmentation results of gliomas for BraTS2023 dataset are
listed in Table 2. UX-Net, a CNN-based method, achieves the best performance
among the comparison methods, with an average Dice of 89.69% and an aver-
age HD95 of 4.81. In comparison, our SegMamba achieves the highest Dices of
93.61%, 92.65%, and 87.71%, and HD95s of 3.37, 3.85, and 3.48 on WT, TC,
and ET, respectively, showing better segmentation robustness.
AIIB2023 For this dataset, the segmentation target is the airway tree, which
includes many tiny branches and poses challenges in obtaining robust results.
As shown in Table 2, our SegMamba achieves the highest IoU, DLR, and DBR
scores of 88.59%, 70.21%, and 61.33%, respectively. This also indicates that our
SegMamba exhibits better segmentation continuity compared to other methods.
CRC-500 The results on CRC-500 dataset are listed in Table 3. In this dataset,
the cancer region is typically small; however, our SegMamba can accurately
detect the cancer region and report the best Dice and HD95 scores of 48.02%
and 30.89, respectively.
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Visual Comparisons To compare the segmentation results of different methods
more intuitively, we choose six comparative methods for visual comparison on
three datasets. As depicted in Fig. 4, our SegMamba can accurately detect the
boundary of each tumor region on BraTS2023 dataset. Similar to BraTS2023
dataset, our method accurately detects the cancer region on CRC-500 dataset.
The segmentation results show better consistency compared to other state-of-
the-art methods. Finally, on AIIB2023 dataset, our SegMamba can detect a
greater number of branches in the airway and achieve better continuity.

4.4 Ablation Study

The Effectiveness of GSC and ToM modules As shown in Table 4, M1 is
our basic method, which only contains the original Mamba layer. In M2, we in-
troduce our GSC module. Compared to M1, M2 achieves the Dice of 46.65% and
HD95 of 37.01, with an improvement of 2.88% and 13.95%. This demonstrates
that the GSC module can improve the segmentation performance by modeling
the spatial features before ToM module. Then, in M3, we introduce the ToM
module, which model the global information from three directions. M3 reports
the Dice and HD95 of 47.22% and 33.32, with an improvement of 1.22% and
9.97% compared to M2. Finally, our SegMamba introduce both GSC and ToM
modules, achieving the state-of-the-art performance, with the Dice and HD95 of
48.02% and 30.89.
The high efficiency of TSMamba We verify the high efficiency of the TS-
Mamba block through an ablation study presented in Table 5. M4 is UX-Net [12],
which utilizes large-kernel convolution as its core module. M5 is SwinUNETR [6],
which uses the SwinTransformer as its core module. Both improve receptive field
by computing long range pixels, but they cannot compute the relationship within
a global range. In M6, we use self-attention, a global modeling layer, as the core
module, but it is infeasible due to the computational burden. In comparison, our
method uses a Mamba-based global modeling module (TSMamba), and achieves
a better training memory (TM) and inference time (IT), even though the max-
imum flattened sequence length reaches 260k.

5 Conclusion
In this paper, we propose the first general 3D medical image segmentation
method, based on the Mamba, called SegMamba. We design a tri-orientated
Mamba (ToM) module to enhance the sequential modeling of 3D features. Then,
to effectively model the spatial features, we further design a gated spatial convo-
lution (GSC) module to enhance the feature representation in the spatial dimen-
sion before each ToM module. Moreover, we propose a new large-scale dataset
for 3D colorectal cancer segmentation called CRC-500, to facilitate the related
research. SegMamba exhibits a remarkable capability to model long-range de-
pendencies within volumetric data, while maintaining outstanding inference ef-
ficiency, compared to traditional CNN-based and transformer-based methods.
Extensive experiments demonstrate the effectiveness of our method.
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