
SIViP
DOI 10.1007/s11760-015-0802-4

ORIGINAL PAPER

Stereoscopic video quality assessment based on visual attention
and just-noticeable difference models

Feng Qi1 · Debin Zhao1 · Xiaopeng Fan1 · Tingting Jiang2

Received: 25 September 2014 / Revised: 8 July 2015 / Accepted: 16 July 2015
© Springer-Verlag London 2015

Abstract With the consideration that incorporating visual
saliency information appropriately can benefit image qual-
ity assessment metrics, this paper proposes an objective
stereoscopic video quality assessment (SVQA) metric by
incorporating stereoscopic visual attention (SVA) to SVQA
metric. Specifically, based upon the multiple visual masking
characteristics of HVS, a stereoscopic just-noticeable differ-
ence model is proposed to compute the perceptual visibility
for stereoscopic video. Next, a novel SVAmodel is proposed
to extract stereoscopic visual saliency information. Then, the
quality maps are calculated by the similarity of the origi-
nal and distorted stereoscopic videos’ perceptual visibility.
Finally, the quality score is obtained by incorporating visual
saliency information to the pooling of quality maps. To eval-
uate the proposed SVQA metric, a subjective experiment is
conducted. The experimental result shows that the proposed
SVQA metric achieves better performance in comparison
with the existing SVQA metrics.
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1 Introduction

Stereoscopic video quality assessment (SVQA) is one of
the most fundamental yet challenging issues in 3D video
processing technology. Lots of efforts have been devoted to
the study of SVQA in the last decade. Ha et al. [1] designed
a quality assessment method by considering the factors of
temporal variation and disparity distribution. Based on the
associated binocular energy and the binocular signal gen-
erated by simple and complex cells, Bensalma et al. [2]
proposed a binocular energy quality metric to assess quality
for stereoscopic images. Shao et al. [3] proposed a quality
assessment metric for stereoscopic images by considering
binocular perception and combination properties. Based on
objective metrics of 2D video, Joveluro et al. [4] proposed a
perceptual qualitymetric (PQM) for SVQA. Jin et al. [5] pro-
posed a novel SVQA method based on 3D-DCT transform.
Lu et al. [6] proposed a spatial frequency dominance (SFD)
model by considering the observed phenomenon that spa-
tial frequency determines view domination under the action
of HVS. Han et al. [7] proposed a 3D spatial–temporal
structural (3D-STS) metric to evaluate the inter-view cor-
relation of spatial-temporal structural information extracted
fromadjacent frames. Inspired by these priorworks, based on
binocular visual properties, we establish a visual perception
model for SVQA.

HVS has complicated visual characteristics, and it is still
an up-to-date sealed book in physiology and psychology. In
psychophysics, just-noticeable difference (JND) is a signif-
icant approach to detecting the smallest difference between
starting and secondary levels of a particular sensory stimulus.
Since its good approximation of many sensory dimensions
[2], JND has been an active research in the study of visual
perception [8–11]. As one of the most important visual char-
acteristics, visual attention makes human focusing certain
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salient regions in the visual field. Thus, the distortions in
these salient regions would affect the subject’s judgment on
the overall quality of the stereoscopic video. To reflect this
visual characteristic, a stereoscopic visual attention (SVA)
model is proposed to extract the visual saliency information
from stereoscopic videos. In the proposed SVQAmetric, the
stereoscopic video’s quality maps are first calculated by the
similarity of perceptual visibility between the reference and
distorted stereoscopic videos. Then, the visual saliency infor-
mation is introduced as a weighting function in the pooling
of quality maps.

The main contributions of our work are listed as follows:

(1) A novel SVQA metric is proposed based upon the per-
ceptual visibility of human binocular visual system and
the visual saliency information of stereoscopic videos.

(2) A stereoscopic JND (SJND) model is proposed to esti-
mate perceptual visibility of human binocular visual
system, inwhich four visual characteristics are taken into
account, e.g., sensitivity of luminance contrast, spatial
masking, temporal masking and binocular masking.

(3) A SVA model is proposed to extract the visual saliency
information of the stereoscopic video, including intra-
frame’s saliency, interframe’s saliency and binocular
saliency.

(4) A subjective experiment is conducted to establish the
ground-truth database for stereoscopic videos.

2 Related work and motivations

2.1 JND model

JND reveals the limitation of the human visual perception,
and it iswidely used in videoor imagequality evaluation [12].
In 3D image processing, only few stereoscopic JND models
are available for the human binocular visual perception. Zhao
et al. [13] proposed binocular JND (BJND) model to mimic
the basic binocular vision properties in response to asymmet-
ric noises in a pair of stereoscopic images. Silva et al. [14]
derived a mathematical model to explain the depth JND.
Based on the idea that human has different visual perception
for the objects with different depths, Li et al. [15] proposed
a depth perception-based joint JND model for stereoscopic
images.

Human binocular visual system allows us to perceive
stereoscopic spatiotemporal visual information from the
outside world. However, what people see is not a direct
translation of retinal stimuli; it involves complicated psy-
chological inference [16]. Based on the free energy theory
in brain theory and neuroscience [17], human visual system
(HVS) adaptively excludes the disorder tendency informa-
tion in a continued movement scene and endeavors to focus

on the definite content of the perceived image. It indicates that
HVS exerts the minimum noticeable difference to perceive
the visual information. As human binocular visual system,
the minimum noticeable difference decides various visibility
limitations, such as luminance contrast, disparity, binocular
rivalry and binocular masking [18]. Most of the previous
stereoscopic JND models focused on the influences between
the disparity and depth perception. In this paper, we try to
characterize the binocular visual perception by considering
the multiple visual masking characteristics.

2.2 Stereoscopic visual attention (SVA) model

Visual attentionmodels have beenwell investigated in the last
decade, which gave rise to a series of important theories and
models for image quality assessment [19]. Most of the exist-
ing SVAmodels are the extensions of traditional single-view
attention modeling methods by considering depth informa-
tion [20–22]. Based on multiple perceptual stimuli, Zhang et
al. [20] proposed a bottom-up SVAmodel to simulate stereo-
scopic vision inHVS.Dittrich et al. [21] detected 3D saliency
of stereoscopic video by three components: salient colors in
individual frames, salient information derived from camera
and object motion, and depth saliency. Wang et al. [22] pro-
posed a depth-saliency-based model for 3D visual attention
and conducted a binocular eye-tracking experiment to create
ground-truth database. All of their 3D visual attention mod-
els need disparity map to generate the stereoscopic saliency
map.

Wang et al.’s [19] and Zhang et al.’s [23] studies indicated
that information content weighting plays a significant role
in pooling stage and leads to consistent improvement in the
performance of IQA algorithms. Therefore, inspired by their
work, we propose a novel stereoscopic visual attentionmodel
and incorporate it to our SVQA metric.

2.3 Motivation

To evaluate the quality of stereoscopic video pairs is a psy-
chophysical process. Subjects make evaluation through the
relationship between human sense and image stimulus. This
evaluation process can be decomposed into three stages (as
shown in Fig. 1). The first is visual perception, in which the
subject perceives visual information from the given stereo-
scopic video. The second is visual attention, in which the
subject focuses on the significantly local regions of the
stereoscopic video. The third is evaluation, in which the sub-

Fig. 1 The flowchart of the evaluating process
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ject judges the degraded level between the reference and
distorted stereoscopic videos. Therefore, according to the
evaluation process, the proposed SVQA metric consists of
three parts and it will be elaborated in the next section.

3 The proposed SVQA

The framework of the proposed SVQA metric is shown in
Fig. 2. The original and distorted stereoscopic videos’ SJNDs
are firstly computed. Secondly, stereoscopic saliency infor-
mation is extracted from the original stereoscopic video.
Next, the quality maps are calculated by the similarity of the
original and distorted stereoscopic videos’ SJNDs. And then,
the stereoscopic saliency information is used as a weighting
function in the pooling of the quality maps. Finally, the final
quality score is obtained.

3.1 SJND model

According to the previous studies [8,9,13,15], four major
masking effects have been validated to influence the percep-
tual visibility of stereoscopic videos.

(1) Luminance adaptation As indicated by Weber’s law,
human visual perception is sensitive to luminance con-
trast rather than absolute luminance value.

(2) Spatial masking The reduction in the visibility of the
stimuli is induced by the increase in the spatial nonuni-
formity of the background luminance.

(3) Temporal masking The masking effect in the time
domain is known as temporal masking, which has reduc-
tion peculiarity when watching a video.

(4) Binocular masking When dissimilar stimuli are pre-
sented in the corresponding retinal locations of the two
eyes, one eye’s stimulus is influenced by the other eye’s.

The four masking effects are characterized by SJND [11],
which consists of TJND and BPJND. TJND corresponds to
the first three factors; BPJND corresponds to the factor of
binocular masking. The element of TJND is a classic spa-
tial JND model [8], in which luminance contrast and spatial
masking are the two factors that determine the JND of the
image. The perceptual model simplifies the complex process
of estimating visibility by JND, which is defined as:

JND(i) = max { f1 (bg(i),mg(i)) , f2(bg(i))} , (1)

where f1(bg(i),mg(i)) and f2(bg(i)) give the spatial mask-
ing effect and the visibility threshold due to background
luminance around the pixel i at (x, y), respectively. bg(i) and
mg(i) are the average background luminance and the maxi-
mum weighted average of luminance differences around the
pixel i , respectively.

It is generally acceptable that bigger interframe difference
(caused by motion) can lead to larger temporal masking [9].
Then, TJND is defined as:

TJND(i, t) = max { f3 (bg(i, t),mg(i, t)) , f4 (bg(i, t))} ,

(2)

where

f3 (bg(i, t),mg(i, t)) = argmax
(
(Pt − Pt−1) ,�P̄

)
, (3)

f4 (bg(i, t)) = argmax
(
(Qt − Qt−1) ,�Q̄

)
, (4)

Fig. 2 The framework of the proposed SVQA metric
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Pt and Qt denote f1(bg(i),mg(i)) and f2(bg(i)) of JND(i)
at pixel i in the frame t (t ≥ 2) , respectively. �P̄ and �Q̄
denote the mean difference between the two adjacent frames
of thewhole video’s P andQ. For eachview’s video, there are
the corresponding TJNDL(i, t) and TJNDR(i, t). According
to the relationship of the reference (right) and auxiliary (left)
views [24], TJND is defined as:

TJND(i, t) = 3

8
[TJNDL(i, t)] + 5

8
[TJNDR(i, t)] . (5)

Physiologists suggest that disparity-sensitive neurons in
the visual cortex of mammals are encoded to perceive
stereopsis [25]. These neural mechanisms are directly rep-
resented as binocular rivalry and binocular fusion. Binocular
rivalry occurs when dissimilar monocular stimuli present
to the corresponding retinal locations of the two eyes;
in contrast, binocular fusion occurs in similar monocular
stimuli. Therefore, we divide each view frame of stereo-
scopic video into rivalry stimuli and fusion stimuli, and they
correspond to occlusion and nonocclusion pixels, respec-
tively.

Occlusion pixels indicate that the pixels only present to
one eye. They cannot be seen superimposed in the both eyes,
and they are seen for a randommoment. Based on the concept
of contrast sensitivity function (CSF), only the luminance
contrast is adopted in the BPJND model, which is defined
as:

BPJNDO(i, t) = p(t) · f3L (bg(i, t),mg(i, t))

+ (1 − p(t)) · f3R (bg(i, t),mg(i, t)) ,

(6)

where p(t) is a random number <1 which varies about the
time. f3L and f3R are luminance differences of the interframe
between the left view and the right view, respectively. Here,
p(t) is a sawtooth value between [0, 1].

For nonocclusion pixels, besides the two factors affecting
the visibility in the spatial domain, another factor affecting
the binocular visibility is the left and right view’s consistency
of luminance. It is expressed as:

BPJNDN(i, t) = max { f3 (bg(i, t),mg(i, t)) ,

f4 (bg(i, t)) , f5
(
bg′(i, t)

)}
, (7)

where f5(bg′(i, t)) represents the luminance visibility of one
view’s tth frame relative to the other view’s.

A psychophysical experiment is conducted to verify the
luminance visibility of binocular masking effect [11]. The
experimental result is shown in Fig. 3. Then, the binocular
masking function is approximately defined as:

Fig. 3 Binocular masking effect

f5
(
bg′(i, t)

) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

a ×
(
1 −

(
bg′(i, t)/127 1

2

))
+ b,

if bg′(i, t) ≤ 127

c × (
bg′(i, t) − 127

) + d,

otherwise

(8)

where a denotes the visibility when the other view’s gray
level is 0, and c denotes the slope of the line that models
the function at higher luminance of the other view. b and d
are the minimum amplitudes of visibility due to binocular
masking effect. A function fitting is used to parameterize the
four parameters a = 15, b = 5.08, c = 0.04, d = 5.08.

Combining TJND with BPJND, SJND is defined as:

SJND(i, t) = [TJND(i, t)]μ · [BPJND(i, t)]η, (9)

where μ and η denote the weights to adjust the balance of
TJND and BPJND. They will be discussed in Sect. 5.

3.2 SVA model

According to the selective processing mechanism of human
visual system, we develop a novel stereoscopic visual atten-
tion model and incorporate it into the SVQA metric. The
framework of the proposed SVA is shown in Fig. 4.

In monocular attention, with the histogram-based contrast
algorithm [26], the pixel i’s saliency value Sm(i) is computed
by:

Sm(i) = 1

(m − 1)T

n∑

j=1

(
T − D(c, c j )

)
S(c j ), (10)

where T is the sum of distances between color c and its m
nearest neighbors c j . (T − D(c, c j )) assigns larger weights
to colors closer to c in the color feature space. S(c j ) is the
image saliency value of a color value c j .

In binocular attention, based on binocular stereopsis adap-
tation model that HVS separates adaptable channels for
summation and difference of the neural signals to perceive
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Fig. 4 The framework of the proposed SVA model

stereopsis from the two eyes [27], the two views first frame’s
summation and difference are computed as:

Isum = IL
2

+ IR
2

, (11)

Idif = |IL − IR| + |IR − IL| , (12)

where IL and IR are the left and right view first frame,
respectively. The feature self-resemblance algorithm [28] is
exploited to extract the saliency map from Isum and Idif . The
pixel i’s saliency value Sbs (i) is calculated from Isum by:

Sbs (i) = 1
∑Q

j=1 exp
(−1+ρ(Fk ,Fl )

σ 2

) , (13)

where ρ(Fk, Fl) is called the matrix cosine similarity and
is defined as the Frobenius inner product. Q is the num-
ber of features in the center+ surrounding region, and σ

is a parameter controlling the fall-off of weights. The pixel
i’s saliency value Sbd (i) is calculated from Idif in the same
way. Then, the saliency value Sb(i) in binocular stereoscopic
saliency map can be obtained as:

Sb(i) = 1

2
· Sbs (i) + 1

2
· Sbd (i). (14)

In dynamic tracking attention, due to the high consistence
between both views’ videos, only the consistent motions of
the prominent objects with enough amplitude in left view’s
video are popped out as the indicators of salient region.Using
an optical flow function [29], the indicators are calculated
as:

arg min
u,v,n

E
(
u, v, û, v̂

)

=
∑

i, j

{

fD

[
∑

r≤n

(
IL(x, y, t)− IL

(
x+rux,y, y+rvx,y, t+m

))
]

+ λ1
[
fS(�ux ) + fS

(
�uy

) + fS (�vx ) + fS
(
�vy

)]}

+ λ2
(∥∥u − û

∥∥ + ∥∥v − v̂
∥∥) + λ3 fω

(
û, v̂

)
, (15)

where u, v are the horizontal and vertical components of the
optical flow field to be estimated from the tth left frame IL(t)
and the (t+m)th left frame IL(t+m). û, v̂ denote an auxiliary
flow field. fD is the brightness constancy constraint function,
and fS is the smooth penalty function. λ1 is a regularization
parameter. λ2, λ3 are scalar weights. fω is the state similarity
function. Then, the interframe’s saliency is expressed as:

St (i) = N

(√
u2i + v2i

)
, (16)

where N (·) is a normalized function.
In the saliency map fusion, the weights of the three

saliency maps are determined by the distribution of salient
pixels in each saliency map. If the salient pixels of the
saliency map converge at one region, a larger weight will
be set for this saliency map. While the salient pixels disperse
among the saliency map, a smaller weight will be assigned.
The intraframe, interframe and binocular saliency maps are
fused as:

SF = wm · Sm + wt · St + wb · Sb, (17)

where wm, wt , wb are the normalized weights of monocular
saliency map w′

m , binocular saliency map w′
b and temporal

saliency map w′
t . The w′

m is calculated as:

w′
m = 1

e
‖Sm‖0
W×H

, (18)

where ‖Sm‖0 is �0 norm, which counts the nonzero entries of
the salient pixels in saliencymap Sm .W, H are the width and
height of the saliencymap Sm , respectively. Similarly, thew′

b
and w′

t are calculated in the same way. Then, the normalized
weighting of w′

m is expressed as:

wm = w′
m

w′
m + w′

b + w′
t
, (19)

wt , wb are calculated in the same way.

3.3 Quality calculation

The quality maps of the original and distorted SJND maps
are calculated as:
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Fig. 5 The first frames of nine sequences in the subjective test

q(i, t) = 2 · SJNDo(i, t) · SJNDd(i, t) + ε

SJND2
o(i, t) + SJND2

d(i, t) + ε
, (20)

where SJNDo(i, t) and SJNDd(i, t) denote t th frame’s SJND
map values at pixel i of the original and the distorted stereo-
scopic videos, respectively, and here we take ε = 0.1
empirically. Since degradations in the nonsaliency regions
still affect subjects’ evaluation, we adopt different weights
in saliency and nonsaliency regions to pool the quality maps
as a quality score:

Q =
∑

i,t

q(i, t) × [w3D · SF + (1 − w3D) · (1 − SF )] ,

(21)

wherew3D is theweight of salient region in our SVQAmodel
and is discussed in Sect. 5.

4 Subjective experiment

To the best of our knowledge, there is only one public data-
base [30] in the studies of 3D video quality assessment.
To better evaluate the proposed SVQA metric, a subjective
experiment is conducted to construct a ground-truth database.
Nine stereoscopic videos are chosen to establish our database
(Fig. 5). The subjective test setting is shown in Table 1. For
more details, please visit our website [31].

5 Experimental results

5.1 Parameter optimization

To determine the three parameters in the proposedmetric, we
compare its performances at the different parameters. Four
evaluation criteria are chosen in the performance evaluation,
e.g., PLCC, SROCC, KRCC and RMSE. In Eq. (9), μ, η

Table 1 Subjective test setting

Stereoscopic video encoder JMVM 2.1

QP 0, 20, 30, 40, 50

Distortion type GaussBlur (OpenCV)

Sigma 0, 1, 3, 5, 7

Frame rate 25 fps

Display ViewSonic VX2268wm

Display resolution 1680×1050

Refresh rate 120Hz

Glasses Nvidia 3D vision shutter glasses

Glasses refresh rate 60Hz

Subjective test standard ITU-R BT.500-11

Test method SSCQE

Observers 18

Age range 20–35

Viewing distance 1m

Table 2 Performance of different w3D

w3D PLCC SROCC KRCC RMSE

0.5 0.8289 0.8271 0.6489 0.5512

0.6 0.8353 0.8352 0.6558 0.5453

0.7 0.8378 0.8356 0.6565 0.5429

0.8 0.8319 0.8321 0.6542 0.5486

0.9 0.8112 0.8101 0.6336 0.5677

1 0.7915 0.7918 0.6169 0.5849

Table 3 Performance of different μ, η

μ, η PLCC SROCC KRCC RMSE

(0.1, 0.9) 0.5926 0.5795 0.4190 0.8010

(0.2, 0.8) 0.6336 0.6219 0.4573 0.7693

(0.3, 0.7) 0.7648 0.7695 0.5913 0.6407

(0.4, 0.6) 0.8240 0.8177 0.6432 0.5634

(0.5, 0.5) 0.8378 0.8356 0.6565 0.5429

(0.6, 0.4) 0.8415 0.8379 0.6650 0.5372

(0.7, 0.3) 0.8370 0.8348 0.6558 0.5434

(0.8, 0.2) 0.8187 0.8144 0.6391 0.5710

(0.9, 0.1) 0.6948 0.6962 0.5248 0.7152

denote theweights to adjust the balance ofTJNDandBPJND,
there exists μ + η = 1. In Eq. (21), w3D is the weighting of
saliency, there exists w3D ∈ [0.5, 1]. Here, we firstly fix
μ = η = 0.5 and compare the performance of different w3D

in Table 2. The criterion that achieves the best performance
is highlighted in bold.

From Table 2, the metric achieves the best performance
when w3D = 0.7. Then, we fix w3D = 0.7, and compare the
performance of different μ, η in Table 3.
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Fig. 6 Comparison of SJND maps. Images in the first line are the first
frames of left view’s sequence with original, and distortion by H.264
(QP=50), GaussBlur (sigma = 7). Images in the second line are the
corresponding SJND maps

From Table 3, the metric achieves the best performance
when μ = 0.6, η = 0.4.

5.2 Performance of SJND

Figure 6 shows the comparison of SJND maps of Balloons
with original, and distortion by H.264, GaussBlur. From the
second and the third SJND maps in the last line of Fig. 6, it
can be found that block artifacts are existed in flat regions
and texture details are lost in edge regions, respectively.

If we close the SVA model, the performance of the pro-
posed SVQA metric only using SJND model is listed in the
first line of Table 2. In comparison with the best performance
in Table 3, the performance of the proposedmetric only using
SJND model decreases slightly.

5.3 Performance of proposed SVA model

Since no public 3D video eye-tracking database is provided
for evaluation, we choose the 3D image eye-tracking data-
base [22] for performance evaluation. Three criteria are used
to measure the similarity between the fixation density maps
and the computed saliencymaps, e.g., PLCC,KLDandAUC.
Note that higher PLCC, AUC and lower KLD score mean a
better performance.Here,we attempt to develop two state-of-
the-art SVAmodels [20,21] for comparison. The interframe’s
saliency of the three models is all use optical flow algorithm.
If the performance contributions of interframe’s saliency in
these three models are same, the performance of SVA model
depends on the intraframe’s and binocular saliency. The com-
parison results without interframe’s saliency are listed in
Table 4.

5.4 Performance of different distortion types

We also performed the proposed SVQA metric on the dis-
torted stereoscopic videos with different distortion types.

Table 4 Comparison with three stereoscopic saliency models

SVA model PLCC KLD AUC

Zhang et al. model 0.158 0.759 0.567

Dittrich et al. model 0.342 0.552 0.619

Proposed 0.389 0.474 0.657

Table 5 Performance of different distortion types

Distortion type PLCC SROCC KRCC RMSE

H.264 0.5834 0.6810 0.4890 0.6672

JPEG2000 0.8062 0.6901 0.5029 0.5079

Downsampling
and sharpening

0.6153 0.5071 0.4247 0.7209

Table 5 lists the performance results on NAMA3DS data-
base [30].

It can be seen that the proposed metric has better predic-
tion performance for JPEG2000 than the other two distortion
types.

5.5 Comparison with state-of-the-art metrics

We choose four representative metrics to compare, includ-
ing PQM [4], PHVS-3D [5], SFD [6] and 3D-STS [7]. Note
that 3D-STS is the state-of-the-art metric in SVQA. The per-
formance comparison results on our database are listed in
Table 6.

As shown in Table 6, the proposed and 3D-STS metric
achieve the better performance than the other three metrics.

We also performed the experiments on NAMA3DS data-
base. Table 7 provides the performance comparison results
on the NAMA3DS database.

Table 6 Performance comparison of SVQA metrics on our database

Metrics PLCC SROCC KRCC RMSE

PQM 0.7852 0.8165 0.6365 0.6158

PHVS-3D 0.7082 0.7195 0.5353 0.7021

SFD 0.6483 0.6633 0.5021 0.7571

3D-STS 0.8311 0.8338 0.6553 0.5520

Proposed 0.8415 0.8379 0.6650 0.5372

Table 7 Performance comparison of SVQA metrics on NAMA3DS
database

Metrics PLCC SROCC KRCC RMSE

PQM 0.6340 0.6006 0.4391 0.8784

PHVS-3D 0.5480 0.5146 0.3572 0.9501

SFD 0.5965 0.5896 0.4025 0.9117

3D-STS 0.6417 0.6214 0.4544 0.9067

Proposed 0.6503 0.6229 0.4575 0.8629
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It can be seen from Table 7 that the performance results of
PQM, 3D-STS and the proposedmetric are similar. Although
the stereoscopic video contents, the display systems, the sub-
jects and the subjective experiments are different in the two
databases, the proposed metric can still work well.

6 Conclusion

This paper proposed a novel SVQA metric in three stages,
e.g., visual perception, visual attention and estimation. To
evaluate the proposed metric, a subjective test is conducted
to construct a ground-truth database. The experimental result
shows that the proposed SVQAmetric has a competitive per-
formance comparing with the existing SVQA metrics.
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