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ABSTRACT

Video quality assessment (VQA), which is capable of automatically
predicting the perceptual quality of source videos especially when
reference information is not available, has become a major con-
cern for video service providers due to the growing demand for
video quality of experience (QoE) by end users. While significant
advances have been achieved from the recent deep learning tech-
niques, they often lead to misleading results in VQA tasks given
their limitations on describing 3D spatio-temporal regularities using
only fixed temporal frequency. Partially inspired by psychophysical
and vision science studies revealing the speed tuning property of
neurons in visual cortex when performing motion perception (i.e.,
sensitive to different temporal frequencies), we propose a novel
no-reference (NR) VQA framework named Recurrent-In-Recurrent
Network (RIRNet) to incorporate this characteristic to prompt an ac-
curate representation of motion perception in VQA task. By fusing
motion information derived from different temporal frequencies in
a more efficient way, the resulting temporal modeling scheme is
formulated to quantify the temporal motion effect via a hierarchical
distortion description. It is found that the proposed framework is
in closer agreement with quality perception of the distorted videos
since it integrates concepts from motion perception in human vi-
sual system (HVS), which is manifested in the designed network
structure composed of low- and high- level processing. A holis-
tic validation of our methods on four challenging video quality
databases demonstrates the superior performances over the state-
of-the-art methods.
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1 INTRODUCTION

The spread of reliable and rapid internet connectivity have given
rise to an ever-expanding global opportunity for new forms of con-
sumer outreach [1]. The online sharing of user-generated content is
now a day-to-day activity for many users around the world. As the
main carrier of information transmission, video content is receiving
widespread attention from the marketing industry as an upward
trend in digital strategy, particularly among organizations that pro-
vide user-centric video services [9, 35]. Thus figuring out whether
the videos after the production and distribution chains could fulfill
the video receivers is of prime importance for the video providers.
In order to yield estimates highly consistent with the human vi-
sual perception, the video quality assessment (VQA) measurements
are urgently needed and have long been a bone of the contention.
Among them, subjective metric relying on manual rating for dis-
torted videos is the most reliable approach, where the average of
the collecting opinions scores from testing subjects is known as the
mean-opinion-score (MOS). However, its real-world applications
are restricted for the sake of the time and labor it consumes. As an
alternative, researchers pursue objective methods to automatically
predict the visual quality of distorted videos.

Although great efforts have been devoted to VQA researches [3,
4, 36, 42, 46], most of them are narrow in scope and fall far short of
expectations especially for those videos without references which
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Figure 1: Upper: General deep VQA models which concen-
trate on fixed temporal frequency. Lower: The hierarchical
distortion description is achieved by the proposed RIRNet.
To integrate motion information with multiple temporal
frequencies, the nested framework is composed of two kinds
of connections, i) recurrent connections across low-to-high
temporal frequencies, ii) skip connections across coarse-to-
fine motion description. The total loss is accumulated by the
intermediate products and final output through the deep su-
pervision module.

are more valuable in practical applications. As opposed to the image
communities [5, 13, 19], the fact that in video tasks 2D static images
are expanded in temporal dimension to have motion information
should account for this. Presentations of video sequences to human
subjects induce visual experiences of motion and the perceived
distortion in video sequences is a combination of both spatial and
motion artifacts. Hence we argue that one possible solution to ad-
vance video quality prediction resides in an accurate representation
of motion perception in video sequences.

Motion perception is a complicated procedure involving pro-
cessing from low-level to high-level. Specifically, it begins in the
striate cortex (Area V1), while the neurons in Area MT, which is
driven by an extensive projection of V1 responses, is implicated in
integrating local motion information computed by V1 neurons into
an overall percept of motion [25]. Area MT is believed to play a role
in guidance of some eye movements, segmentation and structure
computation in 3D space, models of processing in Area MT is hence
essential in VQA due to the critical role of these functions in the
perception of videos by human observers. The response properties
of neurons in Area MT are well studied in primates. A subset of
neurons in Area MT have been explored to be speed-tuned, and
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their selectivity toward motion direction and speed inhibits the
spatio-temporal frequency separability [28, 29]. To the best of our
knowledge, few existing VQA models have put forth to take these
models into account for motion perception. Hence in our design, it
is desired to model the properties of neurons in Area MT through
the deep-learning manner.

Based on this observation, we present a novel framework to deal
with the no-reference VQA task, termed Recurrent-In-Recurrent
Network (RIRNet), intuitively enabling the network to model the
motion perception of the neurons in Area MT. The resulting frame-
work and its difference from the general deep VQA models are illus-
trated in Figure 1. The underlying hypothesis behind our model is
that, resorting to the recurrent operations performed by recurrent
neural networks (RNNs), motion information in higher temporal
frequency could be gradually enriched by those details from lower
ones, prior to fusion with the retrospective motion contents of the
corresponding time scale. In this case, not only the motion infor-
mation of previous frames can be captured by current frame, but
also the motion information of itself in lower temporal frequen-
cies. Moreover, the skip connections are responsible for recover
the lost information in the downsampling operations, forming the
building block to depict a coarse-to-fine motion description. The
designed temporal modeling mechanism is considered to operate
in a recurrent-in-recurrent way, where the output of the current
frame is not only used to create prediction candidates for the next
frame, but the current state would further propagate to the same
frame with higher temporal frequencies.

The contributions of this work could be summarized with the
following points:

e We propose a novel deep learning-based framework to solve
the NR-VQA task with only input video frames. The frame-
work can be further divided into two parts (i.e., quality degra-
dation learning and motion effect modeling), which can bet-
ter match quality perception of the distorted videos in human
visual system.

e We introduce a hierarchical temporal modeling scheme to
model the speed-tuned property of visual neurons in Area
MT, benefiting from motion information corresponding to
multiple temporal frequencies.

e We demonstrate that the proposed metric outperforms the
state-of-the-art for video distortions from both artificial and
authentic, as supported by the quantitative and qualitative
evaluation on four challenging video quality benchmark
databases.

2 RELATED WORK

On the basis of the availability of reference information, objec-
tive VQA methods can be further classified as full-reference (FR),
reduced-reference (RR), and no-reference (NR) VQA metrics. Entire
or partial information of reference videos is attainable in FR/RR-
VQA metrics, impelling an appreciable correlation between the pre-
dicted results of state-of-the-art FR/RR methods [2, 31, 40] and hu-
man visual perception. Contrarily, NR-VQA metrics exploit distortion-
specific or natural video statistical models without any information
from original videos, which is the major advantage in practical
applications and also the primary concern in this work.
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Figure 2: The overall structure of the RIRNet. The model consists of two parts: a) quality degradation learning sub-network
for extracting distortion-aware features from the raw videos; b) motion effect modeling sub-network can further be divided
into the RTD module for allocating the extracted feature vectors and performing temporal downsampling, the RTR module
for fusing the multiple motion information with different temporal frequencies and DS module for tackling the problem of

gradient fracture. Best viewed with color and zoom-in.

Existing NR-VQA metrics are mainly directed against the distortion-
specific problems, such as rate adaptation and motion blur [3, 42].
These metrics demonstrate the advantages for the specific distor-
tions, but not for other situations. The general-purpose method
is another type of NR-VQA dealing with diversified distortions.
Recently, benefiting from effective feature extraction algorithms,
some successful general-purpose NR-VQA metrics have been pro-
posed and shown promising performance. Saad et al. [30] proposed
V-BLIINDS where a model in the discrete cosine transform (DCT)
domain and a motion model that quantifies motion coherency were
combined to predict video quality. Mittal et al. [23] proposed a
metric called VIIDEO which models the intrinsic statistical regular-
ities to quantify disturbances introduced by distortions. However,
as the extension of the images in temporal dimension, videos are
characterized exhaustively not only by spatial features but also by
temporal ones, which leads to the failure when it comes to videos
with more complicated spatio-temporal regularities for conven-
tional general-purpose metrics.

With the advent of deep learning, extracting discriminative and
semantic features automatically has come to reality. However, few
deep learning-based NR-VQA metrics have emerged mainly due to
the fact that conventional 2D-CNNss are not capable of processing
the raw videos with three-dimensional spatio-temporal regularities.
Notably, Li et al. [20] extracted 3D shearlet transform features of
distorted videos to analyze natural scene statistics, then the fea-
tures evolved by CNNs make the discriminative parts of the primary
features exaggerated. Zhang et al. [44] applied weakly supervised
learning with CNN and resampling strategy for VQA. Commonly,
RNNs and 3D-CNNs are two widely-used approaches for dealing
with the spatio-temporal information. Liu et al. [21] exploited the
3D-CNN model for codec classification and quality assessment
of compressed videos. In [18], a NR-VQA method for in-the-wild
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videos by incorporating content-dependency and temporal-memory
effects was validated. However, the performance and application
scope of these algorithms are constrained without effective ex-
traction of motion information in video quality perception, given
the fact that they are executed at only a fixed temporal frequency.
Therefore, it is highly desired to develop a general-purpose NR
metric which could take advantage of motion information with
different temporal frequencies.

3 RECURRENT-IN-RECURRENT NETWORK

In this section, we introduce the framework of the proposed RIRNet.
To better match the motion processing in primate cortex, it starts
with the quality degradation learning sub-network, and followed
by the motion effect modeling sub-network which could be further
disassembled into three parts, namely Recurrent Temporal Dimen-
sion (RTD) module, Recurrent Temporal Resolution (RTR) module
and Deep Supervision (DS) module. Figure 2 illustrates the con-
cept of the proposed model. Given the feature vectors calculated
from the quality degradation learning sub-network, the motion
effect modeling sub-network specializes in integrating multi-scale
motion information from different temporal frequencies. The ex-
tracted features are downsampled in temporal dimension in the
RTD module. The RTR module, coupled with the DS module which
furnishes latent supervision in side-outputs, allows a hierarchical
spatio-temporal distortion description and provides a coarse-to-fine
video quality prediction.

3.1 Quality Degradation Learning

The goal of the quality degradation learning sub-network is to
perform low-level motion processing and derive local motion in-
formation. The extracted distortion-aware features from individual
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frames will further be fed to the downstream sub-network. Encour-
aged by the positive results that deep semantic features obtained
from a large number of training data achieved in helping address
the content-dependency issues on predicted image quality [33, 41],
we consider the expansion in the video field where the network
can not only obtain information in a single static image, but also
capture the sophisticated evolution along the temporal dimension.
There are multiple options for the precise details of the extended
connectivity in temporal dimension. Among three broad connectiv-
ity pattern categories [15] (early fusion, late fusion and slow fusion)
which are distinguished by when to fuse the extracted features
between different frames. In this work, the late fusion pattern is
chosen to fuse the extracted features which enables direct employ
of the pre-trained model in the image field and perform information
fusion in the late stage.

Furthermore, a sparse sampling strategy instead of dense frames
is adopted in this work in terms of the observation that successive
frames are highly redundant for video quality assessment [39]. In
detail, 4 frames are selected at equal intervals in each video segment
lasting one second as the input to our network.

Assuming each input consists of T selected frames, we feed the
video frames V = {vy, vy, ..., v7} into a pre-trained backbone model
and output the deep semantic feature maps X = {x1,X2, ... X7}
from its top convolutional layer:

X = CNN(V). 1)

Then we apply spatial pyramid pooling (SPP) [10] which aims to
discard redundant information and produce a fixed-length feature
vector for each feature map.

After that, given that the extracted feature vectors are of high
dimension and not feasible for training, they have been dimension-
ally reduced through the fully connected (FC) layer, before being
fed into temporal modeling sub-network:

T=Wxr - -X+bxT, (2)

where WxT and bxT are the parameters in the single FC layer.

3.2 Motion Effect Modeling

Motion effect modeling is another crucial clue for designing objec-
tive VQA models, integrating the obtained local motion information
into a global percept. Differing from the majority of existing works
which focus on specific temporal frequency [18, 44], the proposed
scheme is designed to yield a more comprehensive motion represen-
tation through information at different temporal frequencies. The
temporal modeling sub-network can be separated in two aspects. In
the feature integration aspect, feature vectors with different tempo-
ral frequencies are assigned and aggregated by RTD module. In the
motion refine aspect, the RTR module consisting of nested skip and
recurrent connections is built to capture the fine-grained motion
perception. Furthermore, the introduction of deep supervision pro-
vides additional supervision to solve the gradient back propagation
problem when training. Figure 3 shows the high-level overview of
the temporal modeling sub-network.

Recurrent Temporal Dimension Module. The RTD module

aims to design a downsampling strategy in temporal dimension
and perform feature integration for each frame in the current state
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Figure 3: A high-level overview of the motion effect model-
ing sub-network. Since it is composed of three components,
in order to distinguish them, the RTR module accompanied
by the DS module is marked with a triangle shadow.

based on retrospective ones. First, in order to obtain multiple mo-
tion information with different temporal frequencies, an allocation
strategy is introduced to obtain feature sequences with different
temporal frequencies. Formally, we consider the calculated feature
vectors T as the first element of the feature vector sequence and

we rename it as F® which contains T feature vectors {f’, fg, f%},
the rest elements can be calculated as:

PP = |IFP, (3)
where || - || denotes the uniformly downsampling operation. With

repeating the downsampling operations N times, we can get the
feature vector sequence F = {F",n=0,1,..,N}.

In this paper, we consider applying RNN to integrate the ex-
tracted features. The current hidden state h}’ whose initial values
are h{ is calculated from the current input f and the previous
hidden state h} ,:

h! = RNN(f, b7 ). (4)

We then feed the assemble of the current hidden state h} in all time
steps, H", to the RTR module, as the input of node RO,

Recurrent Temporal Resolution Module. Unlike previous
works which focus temporal modeling on fixed temporal frequency,
the RTR module is formulated to take full advantage of motion
information with different temporal frequencies to get fine-grained
motion perception related to the video quality. The realization
of this function mainly depends on two kinds of connection: 1)
Inspired by the anatomical evidences which have shown that recur-
rent synapses typically outnumber the feed-forward and feedback
synapses in the neocortex [7], we establish recurrent connections
between diverse temporal frequencies in a nested way, building a
gradually deeper hierarchical structure; 2) moreover, to overcome
the inherent restrictions during downsampling operations, skip
connections are filled to recover the lost information, establishing
a foundation for the coarse-to-fine prediction. We claim that with
this framework shallower and deeper layers are combined to learn
richer combinations that span more of the feature hierarchy.

Formally, we formulate the framework as follows. Let R*/ denote
the output of node R*/ where i indexes the downsampling iterations
along the temporal dimension and j indexes the number of the
multi-scale motion information fused besides itself. The stack of
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feature vectors represented by R>/ (j > 1) is computed as:

RY = N [H,P], )
where function N (-) is implemented by a RNN block, and [-] de-
notes the concatenation layer. The node R*/ receive the information
H' from the same temporal frequency through the skip connections,

and the information from lower frequencies P/ through the recur-
rent connections, where the £/ could be generated as followed:

J
k=1’ ©

where C(-) denotes the recurrent connection composed of a frame-
wise concatenation followed by a 1x 1 convolutional layer to ensure
dimensional invariance. The forming framework enables the net-
work to more effectively capture fine-grained motion information
in video sequences, where motion contents in higher temporal
frequencies are gradually enriched by the corresponding motion
contents whose temporal frequencies are relatively lower.

After the final aggregated feature vectors R®N are available,
with the last element of the sequence, hITV , we end up with a single
FC layer for calculating the overall video quality score Q:

Q =WhQ h];—] +th,

P — [C(Rﬂk,j—k)]

™)
where Wy and by are the weight and bias parameters.

Deep Supervision Module. Considering the inevitable gradi-
ent transfer fracture in Figure 3, the introduction of deep supervi-
sion [17] enables to operate integrated direct supervision to each
side-output, rather than the standard approach of providing super-
vision only at final output. The hypothesis is that with the help of
this structure, the network makes the back propagation of gradient
possible, and the optimizer would face an easier optimization prob-
lem when the additional supervised layers weakens the gradient
vanishing problem by preserving gradients from early stage.

Owing to the designed structure, the designed structure is capa-
ble of fusing motion information at multiple temporal frequencies
as ROk (k € {0,1, ..., N}), which are amenable to deep supervision.
Given the input distorted video Y, we describe the loss function
of the deep supervision as a weighted summation of the losses of
several side-outputs, and the overall loss for prediction Y can be
calculated as:

. N+1
L(Y,Y) = Z amLm + fLout

m=1

®)

where L, corresponds to the loss between the m,;, side-output
and the label, and a, assigns each component its own weight
coefficient. Ly corresponds to the loss associated with the final
output layer. f is a hype-parameter to balance two losses and is
tuned on a held-out validation set.

4 EXPERIMENTAL RESULTS

4.1 Experimental Protocols

Database. In the experiments, we relied on 4 subjective video
databases which contain a large variety of distortion types. They
can be further divided into two categories, LIVE VQA and CSIQ
VQA are composed of videos with artificial distortion, while the
contents in KoNViD-1k database and CVD2004 database suffer from
natural distortion.
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LIVE Video Quality database [32]. The database contains 160
videos divided into 10 groups with a resolution of 768x432. Each
group contains one reference video and its corresponding 15 dis-
torted videos whose length are 10s. 15 distorted videos in each group
are generated from four different distortions: wireless distortions,
IP distortions, H.264 compression, and MPEG-2 compression.

CSIQ Video Quality database [38]. This database contains 12
reference videos and 216 distorted videos generated from 6 distor-
tion types: H.264/AVC compression, H.264 video with packet loss
rate, MJPEG compression, Wavelet compression, White noise and
HEVC compression.

KoNViD-1k database [12]. This database aims at natural distor-
tions. It comprises a total of 1,200 videos of resolution 960x540 that
are fairly filtered multiple steps from a large public video dataset,
YFCC100M. The videos are 8s long with 24/25/30fps. The MOS
ranges from 1.22 to 4.64.

CVD2014 video database [26]. This database aims at complex
distortions introduced during video acquisition. It contains 234
videos of resolution 640x480 or 1280x720. The videos are 10-25s
with 11-31fps, which are a wide range of time span and fps. The
realignment MOS ranges from -6.50 to 93.38.

Evaluation criteria. Two common performance criteria to eval-
uate the performance of the proposed metric are employed in our
experiments: the Pearson linear correlation coefficient (PLCC) to
evaluate the accuracy of the prediction results, and Spearman rank-
order correlation coefficient (SRCC) for measuring the monotonicity
of the results. It is noted that higher index means better predic-
tion effect, and a well-performing quality assessment method is
expected to deliver PLCC, SRCC values close to 1. Considering
the inconsistency of the scale between objective predictions and
the subjective scores, we refer to the suggestion of Video Quality
Experts Group (VQEG) [37] before calculating PLCC values, and
adopt a four-parameter logistic function for mapping the objective
score to the subjective score as outlined in [14].

4.2 Implementation Details

Full-resolution input. Since perceptual quality is sensitive to
the variation of input scale, our proposed approach supports by
design arbitrary input size with the introduction of the SPP [10]
layer which enables the network to get rid of the fixed-size input
constraint and output the fixed-length feature vector for varying
input sizes (21 in this work).

Training. We choose ResNet-50 [11] pre-trained on ImageNet [8]
as the backbone network. For recurrent layer, we resort to GRU [6]
which is a recurrent neural network model with gates control. In
order to speed up the convergence of the optimization scheme,
several RNNs with different sizes (corresponding to the sequence
length) are individually trained and saved before being fine-tuned
together. The proposed model is implemented with PyTorch [27].
The Adam [16] optimizer with an initial learning rate le — 4 is de-
ployed for minimizing the #; loss, and every 40 epochs the learning
rate could be decayed by a factor of 0.2. We set the training batch
size as 16 for training our model. To provide a fair comparison for
all comparison methods, all tests are carried out on a computer
with a E5-2630 CPU, 12G NVIDIA TITAN Xp GPU and 64 GB RAM.
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Table 1: Quantitative results of different methods on four publicly available databases. Larger PLCC and SRCC indicate better

performance and the best results are marked in boldface.

Database Criterion ~ BRISQUE [22]  NIQE [24]  V-BLINDS [30] V-CORNIA [43] VIIDEO [23] VSFA [18]  RIRNet(Ours)

PLCC 0.4170 0.3981 0.7482 0.7440 0.6518 0.7278 0.8091

LIVE VQA [32]
SRCC 0.4008 0.3476 0.7244 0.7324 0.6240 0.7001 0.7828
PLCC 0.5338 0.3696 0.7710 0.7533 0.5447 0.7816 0.8426

CSIQ VQA [38]
SRCC 0.5245 0.3599 0.7843 0.7721 0.4906 0.7980 0.8574
. PLCC 0.5896 0.4105 0.6273 0.6518 0.3058 0.7391 0.7812

KoNViD-1k [12]
SRCC 0.6254 0.3782 0.6158 0.6795 0.3412 0.7452 0.7755
PLCC 0.6157 0.3981 0.7222 0.6716 0.2083 0.8277 0.8780

CVD2014 [26]
SRCC 0.6298 0.4995 0.7068 0.6583 0.1544 0.8431 0.8891

4.3 Performance Measure and Comparison

In this paper, seven popular objective NR-I/VQA metrics (BRISQUE [22],

NIQE [24], V-BLLINDS [30], V-CORNIA [43], VIIDEO [23] and
VSFA [18]) are chosen for comparison. Experiments on each data-
base are processed by k-fold (k = 5) cross-validation, ensuring the
training sets and testing sets are not overlapped in content. This
procedure is repeated 5 times and the average values of PLCC and
SRCC results across all repetitions for the mentioned competitors
and the proposed algorithms are given in Table 1. The best re-
sults on each database are marked in boldface. To be noted, IQA
metrics (BRISQUE, NIQE) are performed frame-by-frame of the
video and the overall index is computed as the average of the frame
level quality scores. Among all the metrics, NIQE and VIIDEO are
training-free models while others require training. Support vector
regressor (SVR) [34] is employed to learn the mapping from their
feature spaces to the ground truth for conventional metrics. All
experiments are conducted under the same conditions. Note that
VSFA is the only open-source NR deep learning-based metric avail-
able here, other metrics which need partial information from the
references [44] or have not been released [20, 21] are not feasible
for comparison.

It can be observed from Table 1 that the proposed metric achieves
the best performance both in predicting accuracy (PLCC) and mono-
tonicity (SRCC) on all databases, which confirms our model to be
generalize to diverse impairments. It is not surprisingly that IQA
metrics (BRISQUE and NIQE) inevitably perform poorly since they
do not consider the temporal relation between frames and treat
them independently. Among four benchmarks, KoNViD-1k [12]
is the most challenging one due to the diversified environments.
However, our model yields substantially better quantitative results
(5.70% in terms of PLCC) than the second-best method (VSFA) on it,
which is attributed to the way we designed the temporal modeling
scheme, i.e., fusion of motion information with different temporal
frequencies to achieve a hierarchical motion perception. Besides,
considering the case without VSFA and comparing our metric with
the rest conventional methods, it is worth noting that compared
with the artificial distortions, the proposed method possesses a
greater advantage than the conventional methods in the authentic
distortion databases. Specifically, contrast to the best performing
conventional method, 19.85% improvements on KoNViD-1k (vs. V-
CORNIA) and 21.57% improvements on CVD2014 (vs. V-BLIINDS)
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are achieved, compared with 8.14% increase on LIVE VQA (vs. V-
BLIINDS) and 9.29% increase on CSIQ VQA (vs. V-BLIINDS). This
confirms that the data-driven feature representation is equally ef-
fective for VQA tasks, especially for the more complicated situation
of natural distortion where conventional methods cannot perform
effective feature extraction.

4.4 Cross-database Testing

The generalization ability measuring the performances when com-
ing across the unprecedented videos is of vital importance for a
well-performing VQA model. In this section, we implement a dif-
ferent experiment scheme to demonstrate the robustness of the
proposed RIRNet. Specifically, among four participating databases,
the quality prediction model is trained on one of them and tested
on the other three for each test. To further make a comprehensive
comparison, other four competing learning-based models are also
included. The validation PLCC results are listed in Table 2.

Compared with the conventional metrics, the deep models achieve
more robust performances, ascribing to the eminent feature learn-
ing ability of the DNNs. Without the training samples from the
target databases, the proposed method could still be in the leading
position among the comparison methods (8 times the best per-
formance in all 12 tests, far ahead of the 3 times achieved by the
second place model, VSFA), confirming the well adaptability of the
proposed RIRNet to unknown samples due to the integrity descrip-
tion of spatiotemporal distortion. We can thus conclude that the
proposed model do not depend on the databases.

4.5 Ablation Study

To evaluate the contribution of each component in the proposed
model, we conduct ablation experiments which begins with Quality
Degradation Learning (QDL) sub-network, followed by the Motion
Effect Modeling (MEM) sub-network. Table 3 presents the experi-
mental results.

QDL sub-network. We train our model from scratch when we
remove the features extracted from the pre-trained model. As is
evident from the results, the removal of the pre-trained model is
accompanied by significant performance drop in all four databases
(0.1998, 0.2202, 0.1471 and 0.1878 respectively in PLCC), which
verifies that pre-trained model is a force to be reckoned with in
the successful extraction of quality-related features. Note that the
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Table 2: Cross-database validation of the proposed metric with the competing learning-based models. The best performances

are marked in boldface.

Training database Test database BRISQUE [22] V-BLIINDS [30] V-CORNIA [43] VSFA [18] RIRNet(Ours)
CSIQ VOA [38] 0.2973 0.4960 0.4736 0.5987 0.6230
LIVE VQA [32] KoNViD-1k [12] 0.1985 0.2738 0.2950 0.4022 0.3953
CVD2014 [26] 0.2551 0.2812 0.3389 0.4903 0.4788
LIVE VQA [32] 0.3243 0.5590 0.5846 0.5822 0.5771
CSIQ VQA [38] KoNViD-1k [12] 0.1804 0.2976 0.3144 0.3690 0.3721
CVD2014 [26] 0.1623 0.2714 0.2875 0.4395 0.4508
LIVE VQA [32] 0.3980 0.4913 0.4682 0.6380 0.6621
KoNViD-1k [12] CSIQ VQA [38] 0.3761 0.6318 0.6220 0.7170 0.7354
CVD2014 [26] 0.4360 0.5325 0.5980 0.6958 0.7712
LIVE VQA [32] 0.1742 0.4356 0.3882 0.5760 0.6033
CVD2014 [26] CSIQ VOA [38] 0.4283 0.5912 0.6174 0.7208 0.7126
KoNViD-1k [12] 0.2954 0.5381 0.5244 0.5920 0.6454

Table 3: Alation study of different sub-networks. Perfor-
mance measured by PLCC of our metric equipped with dif-
ferent components on all four databases for ablation study.

Sub-net Database
QDL MEM LIVE CSIQ KoNViD CVD2014
X v 0.6093 0.6224 0.6341 0.6902
v X 0.7160 0.6932 0.6674 0.7135
v v 0.8091 0.8426 0.7812 0.8780

Table 4: Alation study of different components of the QDL
sub-network. Performance measured by PLCC of our metric
equipped with different components on all four databases
for ablation study.

Components of QDL Database

RTD RTR DS LIVE CSIQ  KoNViD CVD2014
X X X 0.6860  0.7332 0.6576 0.7335
v X X 0.7121  0.7695 0.6901 0.7633
v v X 0.8075  0.8307 0.7754 0.8716
v v v 0.8091 0.8426  0.7812 0.8780

other pre-trained model that is available and potentially helpful
can be readily deployed as the backbone network but it is beyond
the scope of this work.

MEM sub-network. Then the effectiveness of the temporal
modeling sub-network is measured by simply decoding the ex-
tracted features with RNNs (equivalent to the output of R%?). As
can be witnessed that the TM sub-network boosts the performance
of video quality assessment by 0.1231, 0.1094, 0.1236 and 0.1445 in
terms of PLCC on the four databases, respectively. They are indeed
substantial improvements considering the progresses reported in
recent years by state-of-the-art methods on VQA tasks (refer to
Table 1).

Moreover, the MEM sub-network is further composed of three
parts, i.e., the RTD module, the RTR module and the DS module.

= Training Loss
-~ Validation Loss

—Training Loss
---Validation Loss

Loss

Figure 4: The loss curves in LIVE VQA database [32] (a) with-
out DS module and (b) with DS module.

To further investigate the contribution from each of them to the
whole system, we then incrementally augment the system with
each individual module. The results presented in Table 4 show
that the RTR module brings about the major performance boost
(78.80%, 66.82%, 73.71% and 79.38%) while the RTD module yields
another minor gain on four databases, which confirms the validity
of the proposed scheme for making full use of motion information
with different temporal frequencies. Although the effect of the DS
module on the overall performance is not obvious, it has played a
positive role in the convergence of the network as can be observed
in Figure 4.

4.6 Qualitative Evaluation of RIRNet

To gain more insight into how the structure of RIRNet gradually
improves the prediction, we also present examples to qualitatively
evaluate the proposed approach, and include the single temporal
frequency baseline (equivalent to the output of R%?) for compari-
son. The visual results combined with their class activation maps
(CAMs) [45], which vividly exhibit the intensity distribution of
gradient changes, are exhibited in Figure 5.

Compared to the single temporal frequency baseline (indicated
by the blue box), the proposed RIRNet (indicated by the red box) is
observed to output more precise quality predictions, benefiting from
the designed recurrent-in-recurrent temporal modeling mechanism.
Take Figure 5 (a) for an example, the single temporal frequency
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Time

CAM CAM

MOS =2.32

Figure 5: Qualitative comparison between the basis RNN model and our RIRNet by examples from KoNViD-1k [12] database.
For each example, the sampled frames are processed by the proposed RIRNet, and output of R%? is equivalent to the the basis
RNN model (indicated by the blue box). We also give the class activation map (CAM) [45] of the first frame in each video

sequence to better illustrate the effectiveness of our method.

0.9

LIVE
- CSIQ
=e- KoNViD
~=- CVD2014

0.85 |
0.8
Q
So7s
a
0.7

0.65

0.6

1 2 3 4 5 6
Temporal resolution

Figure 6: Impact of temporal resolution on quality predic-
tion. The downsampling iterations employed in our imple-
mentation is five whose performances are marked in yellow.

baseline provides an unacceptable prediction for the video (3.74,
compared with the MOS 2.32). On the contrary, as multiple motion
information with different temporal frequencies is taken into ac-
count by the RIRNet, more accurate quality prediction is achieved
by degrees, as can be witnessed in the figure (from 3.74 to 3.12 to
2.79). Simultaneously, from the given CAMs, we could observe that
the focus of the network gradient change gradually shifts to the
position with stronger distortion in the proposed model.

4.7 Impact of Temporal Resolution

To illustrate the effectiveness of motion representation based on
multi temporal frequencies and verify whether the accumulation
of more temporal resolutions is beneficial for video quality pre-
diction, the models are trained with various numbers of temporal
resolutions (ranging from 1 to 6) in this section. Figure 6 exhibits
the experimental results on all the four databases.

There is an obvious performance gap between the models as can
be witnessed. This indicates that the designed temporal modeling
scheme for which the network is originally trained for does affect
the performance. Therefore, the fact that motion representation
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with multi temporal frequencies is highly needed for effective eval-
uation of video quality has been confirmed. Moreover, all curves
turn out incrementally trend up to a certain number of iterations
(5 in this work), but tend to be saturated or even slightly declining
after that (except for CVD2014 due to the large video length distri-
bution). In other words, more accumulated temporal resolutions do
not necessarily lead to consistently better results. Therefore in our
implementation, 5 different scales are employed to build the com-
prehensive motion representation considering both the accuracy
and computational consumption.

5 CONCLUSION

In this paper, we propose the RIRNet for NR-VQA task building
upon insights of the motion perception in primate cortex. By jointly
exploiting multiple motion information with different temporal fre-
quencies when performing high-level motion processing, the pro-
posed framework encodes the extracted local motion information
into powerful motion representation that is closely related to the
sophisticated spatio-temporal distortions in source videos. It turned
out the proposed model enables a coarse-to-fine quality prediction
from a human perception point of view. We show the superior
performance of the RIRNet both quantitatively and qualitatively on
four publicly available video quality databases. It is expected that
the proposed framework also has a potential for other tasks such as
video segmentation which require effective and hierarchical motion
perception.
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