ACLNet: A Deep Learning Model for ACL Rupture Classification **Combined with Bone Morphology**

Chao Liu^{1,2,3}, Xueqing Yu^{1,2,3}, Dingyu Wang^{4,5,6}, and Tingting Jiang^{1,2,3}(\boxtimes)

{lchao@stu., yuxueqing@, wang_dingyu@, ttjiang@}pku.edu.cn

1 National Engineering Research Center of Visual Technology, School of Computer Science, Peking University, Beijing, China 2 State Key Laboratory of Multimedia Information Processing, School of Computer Science, Peking University, Beijing, China 3 National Biomedical Imaging Center, Peking University, Beijing, China

4 Department of Sports Medicine, Peking University Third Hospital, Institute of Sports Medicine of Peking University, Beijing, China 5 Beijing Key Laboratory of Sports Injuries, Beijing, China

6 Engineering Research Center of Sports Trauma Treatment Technology and Devices, Ministry of Education, Beijing, China

MICCAI

• Prompt, accurate diagnosis of ACL(anterior cruciate ligament), followed by apt intervention is imperative to preserve knee joint functionality.

- Existing deep learning approaches often overlook additional factors beyond the image.
- Clinical observations have correlated certain femoral and tibial morphologies with increased ACL rupture risk[1, 2].

Age	Female/male(%)	Rupture/normal(%)	Train(%)	Validation(
31.8 ± 11.2	670/1234(35.2/64.8)	947/957(49.7/50.3)	1521(79.9)	383(20.1)

Dataset

Summary of Subject Demographic and Clinical Data

Datasets

• We integrated bone morphological insights to feature extraction.

Method

- 1904 MRI series, 54008 slices
- image sagittal :

✓ Organizational and structural details

• point cloud — sagittal & coronal : ✓ Multidirectional morphological information

Flow chart for generating point clouds

Results

Method	$ Acc\uparrow Auc$	$ Prec\uparrow$	$ Sens\uparrow$	$ Spec\uparrow$	$ F1\uparrow$
Reports by experts	s 92.73 -	92.59	95.45	90.53	92.69
$\frac{\text{MRNet}}{\text{MRNet} + \text{PCT} [4]}$	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	$\begin{array}{c c c} 4 & 79.92 \\ 8 & 90.46 \\ \end{array}$	$\begin{array}{c c} 78.65\\ \underline{92.62} \end{array}$	$ \begin{array}{c}81.15\\87.85\end{array}$	$\begin{vmatrix} 79.89 \\ 90.34 \end{vmatrix}$
3D-DenseNet [3] Ours	87.59 93.6 92.57 96.5	3 87.23 7 <u>92.14</u>	89.40 90.67	85.05 95.28	$\begin{vmatrix} 87.23 \\ 92.44 \end{vmatrix}$

Comparation between methods

Method	Sample Points Feature	fusion $ Acc\uparrow Auc\uparrow$	$\big Prec \uparrow \big Sens \uparrow \big Spec \uparrow \big F1 \uparrow$
--------	-----------------------	-----------------------------------	---

ACLNet's pipeline

D Baseline model

- After preprocessing MRI raw data, the corresponding three-dimensional image and point cloud representation data were obtained for each case.
- For the image branch, the input size was preprocessed to $16 \times 112 \times 112$ pixel, we used densenet[3] as the feature extractor for its comprehensive feature integration ability.
- the point cloud branch, each patient's input was uniformly For preprocessed to 2048 points by farthest point sampling, and we chose PCT[4] as the feature extractor for its exceptionally adept at parsing the intricate structures of point clouds.

D Data flow

3D-DenseNet $[3]$	-	-	87.59 93.63 87.23 89.40 85.05 87.23
PCT [4]	-	-	$\left 84.38\right 90.87\left 85.00\right 91.10\left 77.72\left 84.31\right.\right.$
ACLNet	2048	\otimes	90.62 96.69 90.13 90.07 91.43 90.39
ACLNet	2048	+	90.62 97.48 90.20 91.17 94.34 90.48
ACLNet	2048	\oplus	92.57 96.57 92.14 90.67 95.28 92.44
ACLNet	1024	\oplus	88.20 92.12 85.83 88.67 86.79 86.98
ACLNet	4096	\oplus	89.84 94.77 90.03 94.00 83.96 89.41

Ablation of components \oplus : Concatenate, +: Weighted Sum, \otimes : Attention

Auto attempt

To verify that this method still works for external data, we did an automated using the bone mask step by segmented by U2Net[5] rather than manual labeled boundary by expert In the point cloud generating part.

Manual	Auto	Manual	Auto

Method	$ Acc\uparrow$	$ Auc\uparrow $	$Prec^{\uparrow}$	Sens	$\left Spec\uparrow ight $	$F1\uparrow$
MRNet	79.90	87.54	79.92	78.65	81.15	79.89
MRNet + PCT [4]	90.63	95.38	90.46	92.62	87.85	90.34
$MRNet + PCT \ [4] \star$	86.33	93.89	85.98	88.59	83.18	85.93
3D-DenseNet [3]	87.59	93.63	87.23	89.40	85.05	87.23
Ours	92.57	96.57	92.14	90.67	95.28	92.4
Ours★	92.58	96.61	92.18	90.60	95.33	92.4

- Given an input, denoted as(X_i image, P_i point cloud): $\mathcal{D} = \{X_i, P_i\}(i = 1, 2 \dots N)$
- Extract feature of X_i and P_i by two branch F_{im} and F_{pc} , we get: $f_i^{im} = F_{im}(X_i), f_i^{pc} = F_{pc}(P_i)$
- Blend the features of the two paths:

 $f_i = f_i^{im} \oplus f_i^{pc}$

• Get the prediction by a classification layer:

 $\widehat{y}_i = L(f_i)$

• We adopted the cross-entropy loss function:

$$_{cls}(y_i, \hat{y}_i) = \frac{1}{N} \sum_{i=1}^{N} [y_i \ln(\hat{y}_i) + (1 - y_i) \ln(1 - \hat{y}_i)]$$

* for auto

References

[1] Al-Saeed, O., Brown, M., Athyal, R., Sheikh, M.: Association of femoral intercondylar notch morphology, width index and the risk of anterior cruciate ligament injury. Knee Surgery, Sports Traumatology, Arthroscopy **21**, 678–682 (2013) [2] Bayer, S., Meredith, S.J., Wilson, K.W., Pauyo, T., Byrne, K., McDonough, C.M., Musahl, V., et al.: Knee morphological risk factors for anterior cruciate ligament injury: a systematic review. The Journal of Bone & Joint Surgery 102(8), 703–718 (2020) [3] Zhang, J., Lu, C., Li, X., Kim, H.J., Wang, J.: A full convolutional network based on densenet for remote sensing scene classification. Mathematical Biosciences and Engineering **16**(5), 3345–3367 (2019) [4] Guo, M.H., Cai, J.X., Liu, Z.N., Mu, T.J., Martin, R.R., Hu, S.M.: PCT: Point cloud transformer. Computational Visual Media 7, 187–199 (2021)

[5] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O.R., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition **106**, 107404 (2020)