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Abstract. Magnetic Resonance Imaging (MRI) is widely used in di-
agnosing anterior cruciate ligament (ACL) injuries due to its ability to
provide detailed image data. However, existing deep learning approaches
often overlook additional factors beyond the image itself. In this study,
we aim to bridge this gap by exploring the relationship between ACL
rupture and the bone morphology of the femur and tibia. Leveraging ex-
tensive clinical experience, we acknowledge the significance of this mor-
phological data, which is not readily observed manually. To effectively
incorporate this vital information, we introduce ACLNet, a novel model
that combines the convolutional representation of MRI images with the
transformer representation of bone morphological point clouds. This in-
tegration significantly enhances ACL injury predictions by leveraging
both imaging and geometric data. Our methodology demonstrated an
enhancement in diagnostic precision on the in-house dataset compared
to image-only methods, elevating the accuracy from 87.59% to 92.57%.
This strategy of utilizing implicitly relevant information to enhance per-
formance holds promise for a variety of medical-related tasks.

Keywords: ACL Classification · MRI Image Processing · Point Cloud
Transformer · Feature Fusion.

1 Introduction

The anterior cruciate ligament (ACL), a pivotal structure within the knee com-
plex, ensures the joint’s stability by mitigating excessive anterior displacement
of the tibia against the femur and facilitating rotational equilibrium. ACL rup-
tures, prevalent in both athletic and general populations, incur an estimated
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Fig. 1. In comparison to previous methods, our model incorporates bone morphology
into the input data.

annual incidence rate of 68.6 per 100,000 person-years [16], precipitating pain,
swelling, compromised knee stability, substantial detriment to daily function
and life quality, alongside an escalated risk for ensuing osteoarthritis [21]. Con-
sequently, prompt, accurate diagnosis, followed by apt intervention, becomes
imperative to preserve knee joint functionality post-ACL rupture.

Magnetic resonance imaging (MRI) stands as the preferred diagnostic modal-
ity for ACL injuries, attributed to its high sensitivity and specificity. Nonetheless,
the intricate anatomy of the knee, compounded by the requisite for specialized
training and variable clinician expertise, renders the accurate interpretation of
knee MRIs a daunting, time-intensive endeavor.

Recent forays into deploying deep learning techniques for bolstering ACL in-
jury identification have yielded auspicious outcomes, underscoring the synergy
between medical science and artificial intelligence. This confluence has demon-
strated that algorithmically extracted features from MRI scans can facilitate
robust ACL diagnostics, achieving predictive area under the curve (AUC) met-
rics ranging from 0.895 to 0.980 [8]. Pioneering studies, such as that by Namiri. et
al. [11], have innovated with segmentation networks to delineate ligament terri-
tories within MRIs, enhancing classification accuracy through three-dimensional
convolutions. Yet, despite these advances, existing models—whether through
sophisticated localization or complex convolutional architectures—remain pre-
dominantly tethered to analyzing raw MRI imagery, often falling short of expert
human diagnostic performance [3, 11,12,15,19].

Given MRI’s rich informational content, a strategy that mines MRI features
while incorporating crucial supplementary data holds promise for elevating ACL
rupture diagnostic precision. Notably, the majority of ACL injuries manifest via
non-contact mechanisms [22], suggesting the influence of underlying anatom-
ical predispositions. Clinical observations have correlated certain femoral and
tibial morphologies with increased ACL rupture risk [1, 2], prompting the iden-
tification of numerous skeletal risk markers—such as femoral notch width and
tibial slope—for assessing rupture and surgical failure probabilities [2, 4, 9, 10].
Biomechanical research further corroborates the role of specific bone morpholo-
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Table 1. Summary of Subject Demographic and Clinical Data.

Age Female/male(%) Rupture/normal(%)
Datasets

Train(%) Validation(%)

31.8±11.2 670/1234(35.2/64.8) 947/957(49.7/50.3) 1521(79.9) 383(20.1)

gies in exacerbating ACL stress, implicating them in the ligament’s rupture
etiology [7,18]. Motivated by these etiological insights, we posit that bone mor-
phological characteristics represent a critical, yet underexplored dimension that
could significantly augment model diagnostic accuracy to rival or surpass expert
levels. Leveraging existing in-house datasets powerd by hospital, we incorpo-
rate femoro-tibial boundary annotations, rendered into point clouds, to facilitate
transformer-based [17] feature extraction.

We introduce ACLNet, a novel methodology distinctively integrates bone
morphological insights as auxiliary diagnostic annotations. This approach en-
codes morphological nuances elusive to direct expert observation, thereby en-
hancing classification efficacy. In addition to MRI sequences used to extract im-
age features, we obtained bone morphological point cloud information for each
case based on in-house annotated information. We extract image features and
point cloud features on two branches respectively. The former captures ACL
region’s structural and textural essenceInitially while the latter mirroring three-
dimensional morphologies. A feature fusion module then synergistically lever-
ages these dual branchs, culminating in substantial classification performance
enhancements. Our approach achieves a final classification accuracy of 92.57%,
marking a 4.99% improvement over non-morphologically augmented models and
comparable to medical expert diagnostic levels.

2 Dataset

To enable a dual-input classification framework analyzing both 2D image se-
quences and 3D point data, we meticulously curated a novel dataset, denoted as
D = {Xi, Pi}(i = 1, 2...N)(N = 1904), which initially comprising 54,008 MRI
images. This study protocol(IRB00006761-M2024043) and informed consent ex-
emption were approved by Peking University Third Hospital Medical Science
Research Ethics Committee. We built our own dataset due to the lack of MRI
acquisition parameters in existing datasets which are necessary for computing
spatial point cloud. For the same reason, we only evaluate all the algorithms
on our own dataset. The data distribution of different cases is shown in Table
1. Sagittal MRI sequences are utilized for image data, as they provide compre-
hensive organizational and structural details of the anterior cruciate ligament
(ACL), enhancing the model’s accuracy in characterizing ACL texture. Addi-
tionally, to ensure a comprehensive representation of morphological information,
both sagittal and coronal sequences are employed for reconstructing 3D point
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cloud data from thick-layer MRI scans. The preparation of the dataset involved
several preprocessing steps:

1. 3D MRI image Data: For each case, the original sagittal MRI sequence length
vary from 13 to 24, while a slice resolution is 512×512. By undergoing process
of selection, cropping, and resizing, we transform the original sequences into
uniform 16× 112× 112 3D image data. We use Xi to represent it.

2. Point Cloud Data: Point cloud inputs are derived from the original MRI
data, where each slice image is annotated with boundary points identifying
the femur and tibia by medical experts. We had 45 doctors involved in data
labeling with 2 doctors overseeing the audit. Each doctor received over 4
hours of labeling training. The workflow included an initial labeling round
followed by a review round. Along with additional data extracted from the
MRI(detailed in the supplementary material), these points are re-positioned
into a 3D spatial arrangement that reflects the original point cloud structure.
Through farthest point sampling and resampling, each case is represented by
a standardized point cloud comprising 2048 points. We use Pi(i = 1, 2...N)
to represent it.

3. Clinical imaging report: For each case, there is a radiological report de-
scribing the diagnosis of ACL rupture. The clinical imaging reports were
written by a radiology resident, verified and signed by two senior radiology
attendings. For each case, the diagnosis result of ACL rupture is denoted as
ỹi(i = 1, 2...N).

4. Ground Truth: The Ground truth was provided by the surgical diagnosis.
During the surgery, the surgeon would give the diagnosis of the ACL under
direct vision. Labeled as yi(i = 1, 2...N), we use these diagnosis as ground
truth.

Figure 1 provides visual examples of the 3D image data and 3D point cloud
utilized in our analysis. This dataset lays a foundation for a detailed examination
of ACL ruptures.

3 Methodology

3.1 Pipeline

The pipeline of our model is shown in Figure 2, consisting of two feature extrac-
tion branches, a feature fusion stage and the final linear classification layer. Note
that the feature extract branch is not restricted to any specific model. Various
methods capable of processing 3D image data and point cloud data can also
function as feature extraction module.

3.2 CNN for MRI series

Our approach to analyzing MRI series employs the 3D-DenseNet [23] architec-
ture. This architecture is particularly effective because it builds a rich, layered
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Fig. 2. ACLNet’s pipeline, which accepts two inputs of MRI image sequences and
point clouds, consists of two feature extraction branches, a feature fusion module, and
a linear classification layer.

understanding of the MRI data. In 3D-DenseNet, each layer does not operate
in isolation on its input. It rather integrates the outputs from all previous lay-
ers, continually enhancing its overall representation of the MRI images. Between
these dense blocks, transition blocks help manage the network’s complexity by
compressing the data, ensuring the model remains efficient and focused. By lever-
aging the comprehensive feature integration offered by 3D-DenseNet, we lay a
solid foundation for accurate diagnosis. We denote this image feature extraction
component as Fim. Given an MRI sequence input Xi, its MRI features f im

i ∈ R
are represented as:

f im
i = Fim(Xi) (1)

3.3 Transformer for point cloud

For analyzing point cloud, we apply the Point Cloud Transformer (PCT) [6]
method, which adapts the foundational Transformer model to suit point cloud
data. PCT innovates by introducing an Offset Attention (OA) module akin to the
discrete Laplacian operator used in Graph Convolutional Networks (GCN) [5],
replacing the standard Self-Attention (SA) mechanism. Drawing inspiration from
PointNet++ [13] and DGCNN [20], PCT further boosts its local feature extrac-
tion capabilities through neighbor point embedding. This dual focus on global
and local features makes PCT exceptionally adept at parsing the intricate struc-
tures of point clouds. Let this image feature extraction branch named Fpc, given
a point cloud input Pi, its MRI features fpc

i ∈ R is represented as:

fpc
i = Fpc(Pi) (2)
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3.4 Feature fusion

For the integration of image and point cloud features, we perform feature fusion
at the feature level after extracting linear feature values from both modalities.
This fusion process employs techniques like concatenation, weighted addition,
and cross-attention to effectively blend the diverse data types. Concatenate ap-
proach works best due to the inherent disparities in data derived from different
sources, we primarily opt for concatenation along the feature dimension as our fu-
sion strategy. We extracted 128-dimensional image features and 256-dimensional
point cloud morphological features before the linear fc layer of 3D-DenseNet and
PCT branches. Given image feature f im

i ∈ R and point cloud feature fpc
i ∈ R,

we obtain the global instance feature fi ∈ R as follows:

fi = f im
i ⊕ fpc

i (3)

Following concatenation, two fully connected layer, which we named as L, is
introduced to process the combined feature set, culminating in the model’s final
prediction output:

ŷi = L(fi) (4)

This fusion approach ensures a comprehensive representation of the data, lever-
aging both global and local insights to enhance diagnostic accuracy.

4 Experiments

4.1 Implementation details

In our experimental framework, we adopt the cross-entropy loss function to guide
all training processes

Lcls(yi, ŷi) =
1

N

N∑
i=1

[yi ln (ŷi) + (1− yi) ln (1− ŷi)] (5)

where ŷi is the model prediction for sample i. Optimization of the model parame-
ters is conducted using the Adam optimizer and the learning rate is meticulously
set at 0.0001. We structured the training regimen to span 200 epochs and set the
batch size to be 32. All computational tasks were executed on a setup consisting
of four RTX 2080s graphics cards.

4.2 Results

Our analysis of the model’s classification capabilities utilized a comprehensive
set of metrics, including accuracy (Acc), area under the curve (Auc), precision
(Prec), sensitivity (Sens), specificity (Spec), and F1 score (F1). Given the ab-
sence of publicly accessible datasets tailored for ACL classification tasks, our
experimentation relied on the dataset described in Section 2. In addition to 3D-
DenseNet [23], we benchmarked our approach against other image-series-based
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Table 2. Evaluational Metrics of Compared Methods for ACL Rupture Classification.

Method Acc↑ Auc↑ Prec↑ Sens ↑ Spec ↑ F1 ↑

Reports by experts 92.73 - 92.59 95.45 90.53 92.69

MRNet [3] 79.90 87.54 79.92 78.65 81.15 79.89
MRNet [3] + PCT [6] 90.63 95.38 90.46 92.62 87.85 90.34

3D-DenseNet [23] 87.59 93.63 87.23 89.40 85.05 87.23
Ours 92.57 96.57 92.14 90.67 95.28 92.44

methodologies, notably MRNet [3]. We augmented these comparisons by incor-
porating point cloud data to assess the impact on classification outcomes. The
summarized results are presented in Table 2. The integration of bone morphology
point cloud data heralds a significant improvement across all metrics. The aug-
mented model achieves its best performance with AUC, reaching 96.57%. More-
over, it demonstrates significant progress in other metrics, effectively matching
the accuracy of manual diagnoses. These results underscore the transformative
impact of integrating bone morphological data into the ACL classification pro-
cess, affirming its efficacy in enriching the model’s diagnostic potential.

4.3 Ablation study

Our study delves into the contributions of different modules to feature extrac-
tion, exploring the impact of various feature fusion methods and point cloud
sampling points on the results. The findings, summarized in Table 3, unveil a
pivotal insight: relying solely on either image sequences or point cloud yields an
accuracy just above 80%. However, the fusion of these two data types remarkably
elevates accuracy to 90%, underscoring the synergistic relationship between bone
morphology and image data in ACL classification. Among the fusion methods
evaluated, the concatenate approach emerges as the most effective. To balance
the trade-off between performance and computational efficiency, we set the sam-
pling number to 2048 in most experiments. The concatenate fusion approach
not only enhances model performance but also streamlines the integration of
complex diagnostic criteria into a cohesive assessment framework.

4.4 Manual annotated points vs. Auto generated points

To validate the efficacy of our classification approach, we conducted a prelim-
inary study. Initially, our input point clouds relied on in-house annotations.
However, we aimed to automate this process by deploying a segmentation model
called U2Net [14]. Following the original setup, we trained the U2Net model
and generated segmentation masks for the validation set. Then, we employed
the same point sampling techniques, as described in Section 2, to construct
the point cloud from the automatic segmentation result. The results, detailed
in Table 4 and illustrated in Figure 3, indicate a modest discrepancy between
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Fig. 3. Two samples of automatically generated point cloud versus manually annotated
point cloud.

Table 3. Ablation Study for Components of ACLNet (⊕: Concatenate, +: Weighted
Sum, ⊗: Attention).

Method Sample Points Feature fusion Acc↑ Auc↑ Prec↑ Sens↑ Spec↑ F1↑

3D-DenseNet [23] - - 87.59 93.63 87.23 89.40 85.05 87.23

PCT [6] - - 84.38 90.87 85.00 91.10 77.72 84.31

ACLNet 2048 ⊗ 90.62 96.69 90.13 90.07 91.43 90.39
ACLNet 2048 + 90.62 97.48 90.20 91.17 94.34 90.48
ACLNet 2048 ⊕ 92.57 96.57 92.14 90.67 95.28 92.44
ACLNet 1024 ⊕ 88.20 92.12 85.83 88.67 86.79 86.98
ACLNet 4096 ⊕ 89.84 94.77 90.03 94.00 83.96 89.41

manually annotated and automatically generated point clouds. Especially when
3D-DenseNet [23] serves as the image sequence feature extractor, our generated
point data achieves a consistent results versus manual generated point data on all
indicators. Although the point cloud generated by segmentation combined with
MRNet [3] cannot catch up with the result of manual annotation, it also gains
considerable performance improvement compared with solely image branches,
boosting the standard accuracy by 7.57%. It’s imperative to highlight that the
enhancement in results is directly correlated with the segmentation model’s pro-
ficiency. This methodology holds the potential to evolve into a fully automated,
end-to-end training paradigm.

5 Conclusion

In this study, we introduce ACLNet, an innovative approach for diagnosing an-
terior cruciate ligament (ACL) injuries. Inspired by extensive clinical experience
and prior biomechanics research, this method distinguishes itself from previous
deep learning efforts by incorporating bone morphology—a factor can hardly per-
cieved by human—into the model training process. Experimental results demon-
strates significant performance improvement versus image-only methods, show-
ing our model is comparable to human experts.
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Table 4. Comparison of results on MRI datasets without bone boundary labeling(⋆
represents point clouds generated automatically ).

Method Acc↑ Auc↑ Prec↑ Sens↑ Spec↑ F1↑

MRNet [3] 79.90 87.54 79.92 78.65 81.15 79.89
MRNet [3] + PCT [6] 90.63 95.38 90.46 92.62 87.85 90.34
MRNet [3] + PCT [6]⋆ 86.33 93.89 85.98 88.59 83.18 85.93

3D-DenseNet [23] 87.59 93.63 87.23 89.40 85.05 87.23
Ours 92.57 96.57 92.14 90.67 95.28 92.44
Ours⋆ 92.58 96.61 92.18 90.60 95.33 92.45

In medical imaging tasks, collaboration between computer method developers
and clinicians is crucial. By combining clinical insights with deep learning tools,
we can improve diagnostic capabilities and deepen our understanding of disease
mechanisms within the interconnected human body.
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