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Motivation

* One key ability of large language models: Scaling the effective context length N
* Bottleneck: the computational complexity of attention O(N?)

* MOE of the attention



Motivation
* MoE (for FFN)

MoE (z) = XE (G;(z)E;(x))

G(z) = TopK (Softmazx(Wy(z) + €))
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Method

e Standard Attention in Transformer

Attn(q, K, V) = Softmax(qKT) | %
 MoBA Architecture
MoBA(q, K, V) = Softmax (qK[I]T) V(I
* N is context length
« I C [N]is the set of selected keys and values



Method

* key innovation in MoBA: the block partitioning and selection strategy
* n 1s the number of blocks
* B = % is block size

« I, =[(i—1)x B+1,i x B|

1 s; € Topk ({s;]5 € [n]}, k)

0 otherwise si = (g, mean_pool(KI;]))

* gating mechanism g; = {

I= ]I

g:>0
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Experiment

e MoBA vs. Flash Attention

(MoBA serves as an alternative to full attention, meaning that it does not introduce new parameters or
remove existing ones.)
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Figure 2: Efficiency of MoBA vs. full attention (implemented with Flash Attention). (a) 1M Model speedup eval-
uation: Computation time scaling of MoBA versus Flash Attention on 1M model with increasing sequence lengths
(8K-1M). (b) Fixed Sparsity Ratio scaling: Computation time scaling comparison between MoBA and Flash Attention

across increasing sequence lengths (8K-10M), maintaining a constant sparsity ratio of 95.31% (fixed 64 MoBA blocks
with variance block size and fixed top-k=3).



EX p er | MENT No-Emb Model Param | Head | Layer | Hidden | Training Token | Block size | TopK
545M 14 14 1792 10.8B 512 3
822M 16 16 2048 15.3B 512 3
1.1B 18 18 2304 20.6B 512 3
1.5B 20 20 2560 27.4B 512 3
2.1B 22 22 2816 36.9B 512 3
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summary

 Partitioning the context into blocks and employing a dynamic gating mechanism to selectively
route query tokens to the most relevant KV blocks

» Offering a balanced approach between performance and efficiency

“Future work may explore further optimizations of MoBA’s block-selection strategies, investigate its
application to other modalities, and study its potential for improving generalization in complex
reasoning tasks”



Writing-Abstract

Scaling the effective context length 1s essential for advancing large language models (LLMs) toward
T P REMMLETXKE o | | |
artificial general intelligence (AGI). However, the quadratic increase in computational complexity
. . . . . O HEEREN ORISR
inherent in traditional attention mechanisms presents a prohibitive overhead. Existing approaches
either impose strongly biased structures, such as sink or window attention which are task-specific, or
radically modify the attention mechanism into linear approximations, whose performance in complex

reasoning tasks remains inadequately explored.

In this work, we propose a solution that adheres to the “less structure” principle, allowing the model
to determine where to attend autonomously, rather than introducing predefined biases. We introduce
Mixture of I Efj%ock j%tt%ntion (MoBA), an innovative approach that applies the principles of Mixture of
REEIFE IS
Experts (MoE) to the attention mechanism. This novel architecture demonstrates superior
REER : : 1t
perf(;i‘mance on long-context tasks while offering a key advantage: the ability to seamlessly
transition between full and sparse attention, enhancing efficiency without the risk of compromising
BB RN MBI ) 2 B e i o
performance. MoBA has already been deployed to support Kimi’s long-context requests and

demonstrates significant advancements in efficient attention computation for LLMs. Our code is
available at https://github.com/MoonshotAI/MoBA.



Writing-Introduction

The pursuit of artificial general intelligence (AGI) has driven the development of large language
models (LLMs) to unprecedented scales, with the promise of handling complex tasks that mimic
human cognition. A pivotal capability for achieving AGI is the ability to process, understand, and

generate loné sequences, which is essential for a wide range of applications, from historical data
4h3E . BRI KA N - , , ,
analysis to complex reasoning and decision-making processes. This growing demand for extended

context processing can be seen not only in the popularity of long input prompt understanding, as
showcased by models like Kimi (MoonshotAl 2023), Claude (Anthropic 2023) and Gemini (Reid et
al. 2024), but also in recent explorations of long chain-of-thought (CoT) output capabilities in Kimi
k1.5 (Team et al. 2025), DeepSeek-R1 (D. Guo et al. 2025), and OpenAl o1/03 (Guan et al. 2024).



Writing-Introduction

However, extending the sequence length in LLMs is non-trivial due to the quadratic growth in

computational complexity associated with the vanilla attention mechanism (Waswani et al. 2017).
5 Bk Ak : : : : : e
This challenge has spurred a wave of research aimed at improving efficiency without sacrificing

performance. One prominent direction capitalizes on the inherent sparsity of attention scores. This
T R RN B E A I A , . ,
sparsity arises both mathematically — from the softmax operation, where various sparse attention
patterns have be studied (H. Jiang et al. 2024) — and biologically (Watson et al. 2025), where sparse

connectivity 1s observed in brain regions related to memory storage.
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Existing approaches often leverage predeﬁne%d s)t(ral%g%}jrgjl ﬁgonstramts such as sink-based (G. Xiao et
al. 2023) or sliding window attention (BelteggE et al. 2020), to exploit this sparsity. While these

methods can be effective, they tend to be highly task-specific, potentially hindering the model’s

mf” f #Ha& 9.
overall #%enerahzablhty Alternatively, a range of dynamic sparse attention mechanisms, exemplified

Bﬂﬁﬁ‘*x E/] %Z{Z':/Z'pﬁ
by Quest (Tang et al 2024), Minference (H. Jiang et al. 2024), and Retrieval Attention (Di Liu et al.

2024), select subsets of tokens at inference time. Although such methods can reduce computation for
long sequences, they do not substantially alleviate the intensive training costs of long-context models,
making 1t challenging to scale LLMs efficiently to contexts on the order of millions of tokens.
Another promising alternative way has recently emerged in the form of linear attention models, such
as Mamba (Dao and Gu 2024), RWKYV (Peng, Alcaide, et al. 2023; Peng, Goldstein, et al. 2024), and
RetNet (Sun et al. 2023). These approaches replace canonical softmax-based attention with linear
approximations, thereby reducing the computational overhead for long-sequence processing.
However, due to the substantial differences between linear and conventional attention, adapting
existing Transformer models typically incurs high conversion costs (Mercat et al. 2024; J. Wang et al.
2024; Bick et al. 2025; M. Zhang et al. 2024) or requires training entirely new models from scratch
(A. Liet al. 2025). More importantly, evidence of their effectiveness in complex reasoning tasks
remains limited.
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Consequently, a critical research question arises: How can we design a robust and adaptable attention
architecture that retains the original Transformer framework while adhering to a “less structure” principle,

allowing the model to determine where to attend without relying on predefined biases? Ideally, such an
: » AT E X B R 2= C
architecture would transition seamlessly between full and sparse attention modes, thus maximizing

compatibility with existing pre-trained models and enabling both efficient inference and accelerated
training without compromising performance.

Thus, we introduce Mixture of Block Attention (MoBA), a novel architecture that builds upon the
innovative principles of Mixture of Experts (MoE) (Shazeer et al. 2017) and applies them to the attention
mechanism of the Transformer model. MoE has been used primarily in the feedforward network (FFN)
layers of Transformers (Lepikhin et al. 2020; Fedus et al. 2022; Zoph et al. 2022), but MoBA pioneers its
application to long context attention, allowing dynamic selection of historically relevant blocks of key and

values for each query token. This aj%aroach not only enhances the efficiency of LLMs but also enables

ﬁifFij]?g‘ﬁ'ﬁ?%/]\(iueryE’\] keyFlvalueRy [ 5248 < Bk . : . .
them fo handle onger and more complex prompts without a proportional increase in resource

consumption. MoBA addresses the computational inefficiency of traditional attention mechanisms by
partitioning the context into blocks and employing a gating mechanism to selectively route query tokens to
the most relevant blocks. This block sparse attention significantly reduces the computational costs, paving
the way for more efficient processing of long sequences. The model’s ability to dynamically select the
most informative blocks of keys leads to improved performance and efficiency, particularly beneficial for
tasks involving extensive contextual information.
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In this paper, we detail the architecture of MoBA, firstly its block partitioning and routing strategy,
and secondly 1ts computational efficiency compared to traditional attention mechanisms. We further
present experimental results that demonstrate MoBA’s superior performance in tasks requiring the
processing of long sequences. Our work contributes a novel approach to efficient attention
computation, pushing the boundaries of what is achievable with LLMs in handling complex and
lengthy inputs.



