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Abstract

As the task of 2D-to-3D reconstruction has gained signif-
icant attention in various real-world scenarios, it becomes
crucial to be able to generate high-quality point clouds. De-
spite the recent success of deep learning models in gener-
ating point clouds, there are still challenges in producing
high-fidelity results due to the disparities between images
and point clouds. While vision transformers (ViT) and dif-
fusion models have shown promise in various vision tasks,
their benefits for reconstructing point clouds from images
have not been demonstrated yet. In this paper, we first pro-
pose a neat and powerful architecture called DiffPoint that
combines ViT and diffusion models for the task of point
cloud reconstruction. At each diffusion step, we divide
the noisy point clouds into irregular patches. Then, using
a standard ViT backbone that treats all inputs as tokens
(including time information, image embeddings, and noisy
patches), we train our model to predict target points based
on input images. We evaluate DiffPoint on both single-view
and multi-view reconstruction tasks and achieve state-of-
the-art results. Additionally, we introduce a unified and
flexible feature fusion module for aggregating image fea-
tures from single or multiple input images. Furthermore,
our work demonstrates the feasibility of applying unified
architectures across languages and images to improve 3D
reconstruction tasks.

1. Introduction

In recent years, the field of 3D computer vision has seen a
surge of interest in converting 2D images into 3D models,
a process known as 2D-to-3D reconstruction. This tech-
nique aims to generate a three-dimensional representation
of an object from one or more two-dimensional images.
Its applications are widespread, including robotics [27], au-
tonomous driving [17, 20], virtual reality [25]. However,
the main challenge of this task lies in establishing accurate
feature matching between the 2D images and the 3D output,
primarily due to their inherent differences. To address this
challenge, deep learning models for 3D reconstruction have
made significant advancements in terms of quality and flexi-
bility. Existing models can be broadly categorized into three
types based on the explicit representation of 3D data: voxel-
based models [7, 57–59], mesh-based models [33, 50, 53],
and point-based models [13, 54]. While voxel-based rep-
resentations suffer from high memory costs at high resolu-
tions and meshes struggle to model inner or irregular struc-
tures, point clouds offer lightweight storage consumption
and are capable of representing various complex shapes. In
this paper, we focus on point-based reconstruction.

Though these methods achieve some success to some
extent, the 2D-to-3D reconstruction task is still suffering
from the following problem: how to find an effective way
to reduce the disparities between images and 3D shapes
for reconstructing accurate results. Most previous methods
[7, 33, 50, 53, 57–59] follow the standard encoder-decoder
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Figure 1. Overall architecture of our DiffPoint. DiffPoint is built on a standard ViT backbone, treating all inputs including the time
image embedding and noisy point cloud patches as tokens and targeting ground truth data x0 for prediction.

structure, in which image features are treated as additional
information and limited semantic information can be con-
veyed to the 3D decoder. As a result, these methods fail
to reconstruct satisfactory results. Driven by scaling mod-
els on large datasets, diffusion models [16, 45, 46] have
shown great success in various tasks [10, 18, 19, 32, 41, 47].
Diffusion models have emerged as highly effective gener-
ative models, showcasing exceptional performance in not
only image synthesis [6, 10, 37, 43, 44] but also the gener-
ation of 3D shapes based on point clouds [26, 30, 64, 65].
Diffusion models show potential to be adopted for 3D re-
construction. However, existing point-based diffusion mod-
els cannot fully solve the problem above. These meth-
ods, implemented with MLP [26] and PVCNN [64, 65],
also treat image embeddings as additional information and
fail to fully explore visual information. Moreover, DPM
based on MLP struggles to reconstruct complex structure
shapes. For Point-Voxel CNN (PVCNN) based diffusion
models [64, 65], they require huge memory and computa-
tion costs to implement voxel convolution operation. On
the other hand, vision transformers (ViT) [11] have shown
promise in various vision tasks due to their flexible back-
bone. However, directly applying ViT to point cloud re-
construction may also suffer from the following problem:
while ViT is excellent at capturing global context, it may

struggle with capturing fine-grained local details in images.
Point cloud data demands a granular understanding of in-
dividual point positions and features, which the traditional
attention mechanisms in ViT, optimized for grid-like image
structures, might not adequately address. In a word, exist-
ing point-based diffusion models and ViT cannot be directly
solve the problem above.

In this paper, we combine diffusion model and ViT to
propose DiffPoint, a neat and flexible ViT-based diffusion
architecture for point cloud reconstruction. The diffusion
model excels in capturing local intricacies and dependen-
cies within data, providing a complementary capability to
ViT’s global context awareness. Directly extending ViT
and diffusion models to point cloud is, however, techni-
cally highly nontrivial: unlike images, point clouds con-
sist of discrete points in 3D space, making it impossible
to divide them into patches directly. To address this is-
sue, we follow the design methodology of PointMAE [34]
and Point-BERT [62], where point cloud are divided into
irregular patches through Farthest Point Sampling (FPS)
and K-Nearest Neighborhood (KNN) algorithm. These di-
vided patches are then encoded into token embeddings us-
ing a lightweight encoder called PointNet [38]. Inspired
by CLIP’s ability to learn robust representations capturing
both semantics and style in images, we leverage these rep-
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resentations for point cloud reconstruction. The input im-
ages are encoded with CLIP into image embeddings. Simi-
lar to U-ViT [1], we treat all inputs including the time, im-
age embedding, noisy points patches as tokens that interact
within the same feature space. To sum up, combining dif-
fusion models with ViT may address the problem above:
a) The ViT backbone in diffusion models helps in cre-
ating a more expressive and context-aware representation
of features in which hierarchical attention mechanisms of
ViT capture both global and local information effectively;
b) ViT’s token-based approach allows for the assimilation
of diverse information, including time, image embeddings,
and patches, effectively bridging the gap between different
modalities. Besides, we introduce a unified multi feature
aggregation module for single and multi-view tasks ensur-
ing consistency in the model architecture.

We evaluate our DiffPoint in both single and multi-view
reconstruction tasks. Our results on popular benchmark
ShapeNet [5] suggests that DiffPoint is capable of recon-
struct high-fidelity point clouds, outperforming multiple
state-of-the-art methods. Furthermore, we extend DiffPoint
to a more complicated and diverse dataset OBJAVERSE-
LVIS [8], demonstrating the powerful modeling capabilities
of DiffPoint and the potential to migrate to large-scale 3D
datasets.

The main contributions of this paper are summarized as
follows:
• We explore 3D point cloud reconstruction and introduce

a novel architecture, DiffPoint, which combines diffusion
models with ViT. DiffPoint enhances image feature repre-
sentation and connects the 2D and 3D domains. Our work
marks the first use of ViT-based diffusion models for 3D
point cloud reconstruction.

• We propose a unified module for aggregating multiple
features, which can be used for single and multi-view re-
construction tasks ensuring consistency in the model ar-
chitecture for both tasks.

• Our model demonstrates state-of-the-art performance in
reconstructing 3D shapes from both single-view and
multi-view perspectives, with exceptional modeling ca-
pabilities confirmed through additional experiments on
OBJAVERSE-LVIS.

2. Related Work
2D-to-3D Reconstruction. Early 2D-to-3D reconstruction
tasks [13, 14, 28, 50, 54] have gained attention in the 3D
computer vision community. Reconstructing 3D shapes
from 2D images involves establishing a connection between
the shape of 3D data and 2D images. It can be seen as a
multi-modal learning problem that requires a large amount
of supervised information in the form of 3D data. There
are two ways to categorize 2D-to-3D reconstruction tasks
based on data representation and the number of input im-

ages. There are two common categorizations that distin-
guish based on the number of input images: single-view
3D shape reconstruction [14, 28, 50, 51] and multi-view 3D
shape reconstruction [53, 57–59].

Categorized by output representation, early works based
on explicit representation can be divided into voxel-based,
mesh-based, or point-based methods. Voxel-based methods
typically use 3D convolutional neural networks [55] and
leverage the CNN structure in both 2D and 3D domains.
However, voxel-based methods suffer from the cubic
growth of voxel data and are limited to low resolution
results [7, 57–59]. Mesh-based methods usually capture se-
mantic information in 2D images using a mesh deformation
network [33, 50, 52], but they lack the ability to represent
inner or irregular structures. In contrast, point-based
methods such as DiffPoint reconstruct point cloud data
from 2D images with lower memory usage and more
detailed inner structure information [13, 54]. On the other
hand, implicit representation based methods like Neural
radiance fields (NeRF) optimize 5D neural radiance fields
through differentiable rendering using image pixel colors
[2, 3, 22, 29, 31, 56, 61]. These approaches differ from
our model in terms of training data and optimizer target.
Additionally, these approaches require dense input images
for compelling results and their performance degrades
when only a few views are available.

Point Based Diffusion Model. The Denoising Diffusion
Probabilistic Model (DDPM) [16, 45] has gained significant
momentum in recent years. As a new type of generative
model, it has demonstrated superior performance in various
generation tasks, including image generation [10, 16],
text-to-image [1, 6, 10, 37, 43, 44], time series imputation
[47], and text-to-speech synthesis [36]. In the field of
image generation, U-Net based diffusion models continue
to dominate while U-ViT [1] have been proposed to explore
the use of ViT for image generation with diffusion models.
Regarding the point generation area, point-based diffusion
models [26, 30, 64, 65] are introduced to address uncon-
ditional or class-conditional point generation problems.
However, due to limitations in the backbone of diffusion
models, DPM [26] based on MLP struggles with modeling
large-scale shapes. Similarly, LION [64] and PVD [65],
which are based on PVCNN, require significant memory
and computation costs for generating high-resolution
shapes. A related work called DiT-3D [30] utilizes ViT for
point diffusion models but does not explore the 3D recon-
struction problem like our DiffPoint does. Additionally,
we differ in how to handle input noisy point clouds as it
would incur additional computation costs to convert them
into voxels and may limit shape resolution in real-world
application scenarios.
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Transformers. Transformers [49] have demonstrated
exceptional performance in various domains, including
NLP [4, 9, 40, 42] and images [11, 15, 23, 63]. ViT [11]
is one of the earliest methods to apply transformers to
image areas by dividing images into patches. Recently,
PointTransformer [12], MaskPoint [21], and PointMAE
[34] have attempted to incorporate transformers into 3D
point cloud analysis. However, there has been limited
exploration of combining ViT and diffusion models for
point cloud data. To the best of our knowledge, along with
[30], we are the first to investigate the use of ViT-based
diffusion models for 3D point cloud analysis.

3. Method
3.1. Background

Diffusion Models. Diffusion models [16, 45, 46] are a
class of promising generative models that introduce noise
to data and then reverse this process to generate data from
the noise. This procedure, known as the forward process or
noise-infection procedure, is formalized as a Markov chain:
q(X1, ..., XT |X0) =

∏T
t=1 q(X

t|Xt−1). It adds small
Gaussian noise to points at the previous time step as fol-
lows: q(Xt|Xt−1) = N (Xt;

√
1− βtX

t−1, βtI), where
βt is a small positive constant and I is the identity matrix
with same dimension as Xt−1.

The reverse process is defined as the conditional distri-
bution pθ(X

(0:T−1)|XT , c), where c is input images fea-
tures encoded by the image encoder. The whole reverse
process can be factorized into multiple transitions based on
the Markov chain:

pθ(X
0, ..., XT−1|XT , c) =

T∏
t=1

pθ(X
t−1|Xt, c). (1)

In the reverse process, the Markov kernel is parameterized
as: pθ(X

t−1|Xt, c) = N (Xt−1;µθ(X
t, t), σ2

θ(X
t, t)I),

where µθ(X
t, t) and σ2

θ(X
t, t) are mean and variance of

the reverse process respectively. By utilizing the reverse
transitions pθ(X

t−1|Xt, c), the latent variables are gradu-
ally returned to the point cloud that aligns with the diffusion
time-step and image condition.

For training objective, we optimize the simple objective
proposed by DDPM [16]:

min
θ
L(θ) := min

θ
E||X0 − ϵθ(

√
ᾱtX

0 +
√
1− ᾱtϵ, t, c)||2.

(2)
In DiffPoint, unlike DDPM which uses ϵ-prediction and
mean squared error as the loss function to predict noise, we
predict the target points X0, which can be interchangeably
used for predicting noise [43]. We utilize the Chamfer dis-
tance (CD) as our loss function.

3.2. Overview

The proposed DiffPoint aims to reconstruct the point cloud
of an object from single or multiple images. This paper
presents a neat and efficient scheme for point cloud re-
construction using a ViT-based diffusion model. Figure 1
depicts the overall approach of our method, DiffPoint. In
each diffusion step, noisy points undergo initial processing
through a splitting and embedding module. Subsequently,
input images (single or multi-view) are processed using pre-
trained CLIP and feature aggregation modules. Finally, a
standard ViT-based backbone is employed to predict ground
truth data.

3.3. Point Cloud Splitting and Embedding

Generally, ViT processes an image as a sequence of flat-
tened patches. However, consisting of discrete points, point
clouds cannot be directly divided into regular patches like
images. To align with the standard ViT backbone, we adopt
the approach used in Point-BERT [62] and PointMAE [34] ,
which involves dividing the point cloud into irregular point
patches using Farthest Point Sampling (FPS) [39] and the
K-Nearest Neighborhood (KNN) algorithm. At each diffu-
sion step, s centers are sampled for point patches through
FPS. Here, s represents the number of point patches. Once
center points are determined, patches are generated by gath-
ering k nearest neighbors from noisy points Xt. Ultimately,
noisy points Xt are divided into s patches with a patch size
of k. As argued in [34]: simply linear embedding against
the principle of permutation invariance [38]. Therefore, we
employ PointNet [38] to encode each point patch into fea-
ture embeddings that can be processed by the ViT back-
bone.

Input images

…

A set of deep features
Feature Aggregation Module

Attention 
activations

Attention 
scores

Weighted 
feature

Aggregated 
feature

Encoder

Image Feature

Figure 2. Illustration of feature aggregation module. Multi image
features encoded by CLIP are aggregated through attention mech-
anism.

3.4. Image Embedding and Feature Aggregation

The remarkable success of CLIP [41] has demonstrated its
ability to learn image representations. Naturally, we adopt
the pretrained CLIP with a ViT-based visual backbone to
encode the input image. Moreover, for multi-view recon-
struction, models need to aggregate features from different
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views of an object. Taking inspiration from the flexible ap-
proach [60] of aggregating multiple image features into one
embedding, we propose a feature aggregation module that
utilizes self-attention mechanism to aggregate multi-image
features. This module can receive features not only from
multi-view inputs but also from single images, resulting in
a neat and consistent model framework.

3.5. Diffusion Backbone

As shown in Figure 1, our DiffPoint’s backbone is built
entirely on the standard ViT. It treats all inputs, including
time, image, and noisy point patches, as tokens. The predic-
tion network ϵθ(X

t, t, c) consists of standard Transformer
blocks. Following [62], we apply MLP positional embed-
ding to each token before adding them to the Transformer
blocks. In the last layer of the backbone, the output aims to
predict the target point cloud X0 in coordinate space. We
simply use a fully connected layer as a project embedding
from the last transformer block to the output with dimen-
sions matching those of X0.

4. Experiments
In this section, we assess the effectiveness of DiffPoint by
evaluating single and multi-view 3D reconstruction tasks.
We implement two versions of our proposed framework for
both tasks: DiffPoint-S for single-view and DiffPoint-M
for multi-view. Specifically, we compare our method with
previous state-of-the-art models through quantitative and
qualitative comparisons. To further analyze its modeling ca-
pability, we extend DiffPoint to train on the OBJAVERSE-
LVIS dataset [8]. The ablation studies focus on assessing
the effectiveness of DiffPoint’s architecture in the multi-
view 3D reconstruction task

4.1. Experimental setup

Baselines. For single-image 3D reconstruction, we com-
pare our method with state-of-the-art baselines, includ-
ing voxel-based (3D-R2N2 [7]), mesh-based (Pixel2Mesh
[50] and AtlasNet [14]), and point-based (PSGN [13] and
3DAttriFlow [54]). In the realm of multi-image 3D re-
construction, we assess against voxel-based methods (3D-
R2N2, Pix2Vox++ [58], LegoFormer [59]) and the mesh-
based approach Pixel2Mesh++. Additionally, we extend
3DAttriFlow for multi-view reconstruction, denoted as
3DAttriFlow-M, by averaging features from multiple views,
as multi-view point cloud reconstruction is a novel explo-
ration. All baseline methods utilize their respective publicly
available code repositories.
Datasets and evaluation metric. For the single-view re-
construction task, we adhere to the settings used in previ-
ous work [54] and only evaluate our DiffPoint on ShapeNet
dataset [5]. It has 43,783 mesh objects covering 13 cate-
gories. Following OccNet [28], we split the dataset into

training, validation, and test sets with the ratio of 70%, 10%,
and 20%, respectively. When calculating metrics, we fol-
low AtlasNet [14] to uniformly sample 30k points on the
mesh surface of the 3D object as ground truth for testing.
Regarding metrics, we evaluate our reconstructed points by
comparing them to ground truth using L1 Chamfer distance
(CD), which is defined as:

LCD(P r, P g) =
1

2N

∑
pr∈P r

min
pg∈P g

||pr − pg||2

+
1

2N

∑
pg∈P g

min
pr∈P r

||pt − pr||2,
(3)

In addition, we use the F-score following [50] to evaluate
the distance between the object surface and it is defined as
the harmonic mean between precision and recall. We set
τ = 10−3 as suggested by [48].

For the multi-view reconstruction task, we maintain con-
sistent experimental setup as the single-view reconstruction
experiments. We evaluate on ShapeNet and use CD and
F-score as the metric. In the 3D reconstruction task, one
of the main concerns is designing a model with high gen-
eralization capability. However, ShapeNet, which is com-
monly used for training, only contains a limited number of
objects with simple structures. Motivated by this limita-
tion, we evaluate our DiffPoint on a challenging real-world
dataset called OBJAVERSE-LVIS. This dataset consists of
approximately 44,834 objects from over 1000 categories
that have complex structures and are obtained from vari-
ous real-world sources. Since OBJAVERSE-LVIS dataset
publicly provides 3D data in GLB format only, it cannot be
directly applied to point-based 3D reconstruction. There-
fore, we preprocess the dataset to obtain point cloud data
and generate 24 rendered images for each object similar to
ShapeNet’s format.
Implementation Details. Our models use PyTorch [35]
and are trained on Nvidia V100 using the Adamw [24] op-
timizer with a batch size of 128. The learning rate is set
to 2e-4. At each iteration, the input images are randomly
sampled from 24 views. Both tasks differ in the number
of sampled images. After being preprocessed by CLIP, the
original 137 × 137 images are resized to 224 × 224. Dur-
ing our experiment, we found it difficult for DiffPoint-S to
converge when trained on all categories. To make train-
ing easier, DiffPoint-S is trained and tested per category on
ShapeNet dataset. For the backbone of DiffPoint-S, we set
the number of ViT blocks to 17 and token embedding di-
mension to 384 for each category.

Unlike DiffPoint-S, DiffPoint-M is trained on all cate-
gories of ShapeNet with more image views as input. The
training process uses a fixed number of 5 input views. When
evaluating the metrics for other baselines, we also main-
tain the same number of images as input. To handle larger-
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Table 1. Single-view reconstruction on ShapeNet dataset in terms of CD ×102 (lower is better) and F-score(τ ) ×102 (larger is better and
τ = 10−3).

Methods CD↓ F-Score(τ )↑
3DR2N2 PSGN Pixel2Mesh AtlasNet OccNet 3DAttriFlow DiffPoint-S 3DR2N2 PSGN Pixel2Mesh OccNet 3DAttriFlow DiffPoint-S

Plane 4.94 2.78 5.36 2.60 3.19 2.11 1.69 85.05 88.24 77.93 79.30 81.55 87.95
Bench 4.80 3.73 5.14 3.20 3.31 2.71 1.72 81.12 80.34 75.80 76.60 72.11 88.00

Cabinet 4.25 4.12 4.85 3.66 3.54 2.66 2.30 68.08 68.94 70.07 74.78 71.49 78.26
Car 4.73 3.27 4.69 3.07 3.69 2.50 2.39 72.40 88.01 76.76 77.55 74.30 75.83

Chair 5.75 3.27 5.77 4.09 4.08 3.33 2.12 68.38 63.65 61.92 66.67 59.40 79.52
Display 5.85 4.68 5.28 4.16 4.84 3.60 2.43 62.82 61.98 65.78 62.76 58.56 74.38
Lamp 10.64 4.74 6.87 4.98 7.55 4.55 1.99 62.25 58.78 62.47 56.91 51.43 80.95

Speaker 5.96 5.60 6.17 4.91 5.47 4.16 2.86 57.50 53.74 56.12 58.54 52.10 73.71
Rifle 4.02 5.62 4.21 2.20 2.97 1.94 1.82 86.90 91.12 83.38 84.53 84.84 87.08
Sofa 4.72 2.53 5.34 3.80 3.97 3.24 2.53 71.97 71.11 70.28 68.10 61.32 72.62
Table 5.29 4.44 5.13 3.36 3.74 2.85 2.31 72.47 74.75 70.43 74.62 70.32 77.18
Phone 4.37 3.81 4.22 3.20 3.16 2.66 2.37 83.27 82.72 82.56 86.79 74.71 77.70
Vessel 5.07 3.84 5.48 3.40 4.43 2.96 1.98 75.46 82.41 73.39 68.96 67.16 82.62

Mean 5.41 4.07 5.27 3.59 4.15 3.02 2.19 72.90 74.29 71.30 72.00 67.64 79.67

Input  Image R2N2 Pix2Mesh OccNetAtlas 3DAttriFlow DiffPoint-S

Figure 3. Single View 3D Reconstruction.The input image is shown in the first column, the other columns show the results for our method
compared to various baselines.

scale data, we set the depth of ViT to 19 and the hidden
size to 512. It’s important to note that both DiffPoint-S and
DiffPoint-M divide noisy point clouds with 2048 points into
64 patches, each containing 32 points.

4.2. Single View Reconstruction

Quantitative comparison. In Table 1, we present the per-
formance of various single view baselines. Since we adopt
the testing setting of 3DAttriFlow, we utilize the results
from 3DAttriFlow for CD. Overall, our DiffPoint-S, which
treats noisy point patches as input tokens, outperforms pre-
vious methods in terms of CD for each semantic category.
We calculate F-score for other baselines (excluding 3DAt-
triFlow) following OccNet’s implementation and DiffPoint-

S achieve best average scores. Specifically, PSGN [13] and
3DAttriFlow [54], as point-based methods, are most rele-
vant to DiffPoint-S. These two methods follow traditional
encoder-decoder pipelines to reconstruct point clouds using
convolutional networks and graph neural networks respec-
tively. In contrast, DiffPoint-S based on ViT can leverage
features from input images in the same latent space, po-
tentially improving the final reconstruction results. Conse-
quently, DiffPoint-S is capable of predicting fine details of
3D shapes and achieving superior performance compared to
its counterparts.

Qualitative comparison. Figure 3 presents the qualita-
tive results of our model and the baselines. All compared
results are visualized using their publicly available imple-
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Table 2. Multi-view reconstruction on ShapeNet dataset in terms of CD ×102 (lower is better) and F-score(τ ) ×102 (larger is better and
τ = 10−3).

Methods CD↓ F-Score(τ )↑
3DR2N2 Pix2Voxel LegoFormer Pixel2Mesh++ 3DAttriFlow-M DiffPoint-M 3DR2N2 Pix2Voxel LegoFormer Pixel2Mesh++ 3DAttriFlow-M DiffPoint-M

Plane 4.17 2.77 2.95 4.29 1.85 1.69 51.11 69.89 64.51 52.18 85.48 88.30
Bench 4.90 3.33 3.18 5.11 2.29 1.86 42.88 58.81 59.81 45.37 79.65 85.27

Cabinet 3.93 3.36 3.54 5.65 2.45 2.26 49.52 57.11 55.15 33.99 79.52 72.88
Car 3.29 2.63 2.82 5.08 2.30 2.26 56.67 67.42 63.33 35.74 80.36 77.19

Chair 4.87 3.83 4.15 6.02 2.78 2.09 38.08 48.62 44.68 31.39 68.98 79.70
Display 5.14 3.87 3.84 4.93 2.87 2.22 36.01 49.59 50.41 44.26 68.47 77.66
Lamp 8.06 6.80 6.74 8.43 4.08 1.94 33.22 40.65 39.01 29.39 57.35 82.79

Speaker 5.64 4.87 4.94 7.03 3.48 2.60 36.13 41.74 41.20 27.13 60.84 68.07
Rifle 3.45 2.58 2.61 3.12 1.75 1.64 61.46 71.79 70.63 71.93 87.84 88.99
Sofa 5.01 3.68 3.50 5.36 2.74 2.45 39.59 52.65 53.93 34.99 71.00 71.38
Table 4.68 3.99 4.04 5.76 2.55 2.02 42.83 50.34 49.65 37.16 75.09 80.96
Phone 3.68 2.71 2.63 4.05 2.11 1.98 60.85 70.94 71.81 57.11 83.02 83.40
Vessel 5.02 3.84 3.84 4.61 2.55 2.22 44.22 54.46 53.44 49.63 73.47 78.90

Mean 4.82 3.71 3.75 5.34 2.58 2.10 45.58 56.46 55.19 42.32 74.69 79.65

mentations. As shown in Figure 3, most methods suc-
cessfully capture the 3D geometry of the single input im-
age. However, 3D-R2N2 produces a 3D voxel but lacks
thin structures and surface details. OccNet and 3DAttri-
Flow can generate 3D shapes with more details and fine
shapes, but they also fail to accurately reconstruct corre-
sponding shapes. In comparison, our model excels at gen-
erating shapes with precise global features and local details,
outperforming other methods. Notably, our model achieves
finer detail reconstruction for jet airplanes (1st row in Figure
3), while the best baseline model (3DAttriFlow) struggles to
recover accurate structures.

4.3. Multi View Reconstruction

Quantitative comparison. We set the number of input im-
ages to 5 for all methods compared in the multi-view re-
construction task. We implement all baselines using their
public code. For voxel-based methods, we convert vox-
els to meshes and sample a fixed number of points from
the mesh. For Pixel2Mesh++, we directly calculate CD
and F-score from mesh data because its results cannot be
sampled into points. As shown in Table 2, our DiffPoint-
M achieves state-of-the-art performance among multi-view
reconstruction baselines, demonstrating its superior perfor-
mance. Specifically, the average CD score is 2.10, which
is much lower than tha t of 3DAttriFlow-M (2.58), and it is
also the same for F-score. This result shows that DiffPoint-
M can reconstruct results closer to ground truth. In terms of
point-based methods, both 3DAttiFlow-M and DiffPoint-M
achieve better CD scores in most categories compared to
single-view reconstruction results. Additionally, due to dis-
crepancies between generated results and publicly available
ground truth data from OccNet, there are differences be-
tween single-view and multi-view CD and F-score results
for 3DR2N2 and Pix2Mesh.
Qualitative comparison. The qualitative results of multi-
view reconstruction are displayed in Figure 4. Similar to the
single-view results, most of the baselines can capture se-

mantic information from the input images and reconstruct
the corresponding shape. However, DiffPoint-M demon-
strates superior performance in generating object details.
For instance, DiffPoint-M is able to reconstruct a more ac-
curate top shape for the lamp example, as shown in the sec-
ond row of Figure 4..

Figure 5 presents various reconstruction results on the
OBJAVERSE-LVIS dataset. Note that we utilize all avail-
able data for training in order to showcase the effectiveness
of our method in modeling complex structures. The input
images used for this demonstration are selected from the
training set. By observing Figure 5, it becomes evident that
DiffPoint-M can be expanded to handle even more intricate
structural data.

4.4. Comparison with Point Based Diffusion Model

In this section, we compare our proposed DiffPoint model
based on ViT with other point-based diffusion models in the
task of single-view reconstruction: DPM [26] and LION
[64]. For DPM, which uses an MLP backbone, we mod-
ify its public code for single-view reconstruction by replac-
ing their point encoder with an image encoder. We refer
to this modified version as DPM-S. For LION, based on
PVCNN, we follow its public implementation for single-
view reconstruction and call it LION-S. In our experiment,
we find that DPM-S cannot effectively model all categories
of ShapeNet data. Therefore, DPM-S is trained separately
for each category. It should be noted that LION-S is trained
on all categories. The average CD score of 13 categories
on ShapeNet is shown in table 3. From the results, we can
conclude that DiffPoint-S performs better than DPM-S us-
ing MLP. Since LION-S focuses on reconstructing reason-
able results from input images as mentioned in LION [64],
its reconstruction results differ from the ground truth and
therefore have a poor CD score. Moreover, as a latent dif-
fusion model with 8192 dimensions of latent vectors, LION
consists of two stages of training which require significant
computational resources.
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Input  Image R2N2 Pix2Vox++ Pix2Mesh++Lego 3DAttriFlow-M DiffPoint-M

Figure 4. Multi View 3D Reconstruction. Multi-view object reconstruction using 5 input views (only 1 is displayed). The first column
shows the input image, while the remaining columns display the results of our method compared to different baselines.

Input  Image

Result

Figure 5. Multi View Reconstruction Results On OBJAVERSE-LVIS. Models are trained using 5 input views. The first column displays
one of the input images, while the second column showcases the results for our DiffPoint.

Table 3. Point based diffusion model comparison for single-view
reconstruction on ShapeNet.

Methods CD↓
DPM-S 3.20
LION-S 8.96

DiffPoint-S 2.19

4.5. Ablation Studies

In this section, we validate how the key components of our
model affect its performance on the multi-view 3D recon-
struction task. Specifically, we analyze the effects of the
multi-feature aggregation module proposed in this paper
and the position embedding. All experimental setups are
consistent with DiifPoint-M, except for the ablation part.
Effect of Multi Feature Aggregation Module. To quanti-
tatively evaluate the multi-feature aggregation module, we
replace it with simple average fusion. Specifically, we re-
fer to the model with the multi-feature aggregation mod-
ule as ”With MFA,” otherwise known as ”No MFA.” Ta-

Table 4. Ablation studies on ShapeNet for multi-view reconstruc-
tion task.

(a) Multi feature aggregation module

Module CD↓
No MFA 2.25

With MFA 2.10

(b) Position embedding

Module CD↓
No PE 2.14

With PE 2.10

ble 4a displays the average CD score for all categories on
ShapeNet. The results indicate that the multi-feature aggre-
gation model enhances the performance of our DiffPoint.
Effect of Position Embedding. As 3D reconstruction task
is a kind of low-level task, position embedding may play an
important role in reconstruction process. In our default set-
ting for DiffPoint-M, we utilize a 1-dimensional learnable
position embedding proposed in ViT. However, to assess the
influence of position embedding, we have conducted exper-
iments without it, referred to as ”No PE”. The results pre-
sented in Table 4b indicate that DiffPoint-M shows minimal
sensitivity towards position embedding with only a slight
decrease in performance.
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5. Conclusion
In this paper, we first present DiffPoint, a novel framework
of diffusion model based on ViT for point cloud reconstruc-
tion. Our DiffPoint is neat and powerful, treating all inputs
including the time, image embeddings and noisy point
patches as tokens. Compared with the previous methods,
which cannot fully explore the visual information from
images, DiffPoint takes the advantage of ViT architecture
to enhance the feature representation and reduce the
disparities of images and point clouds. The effective-
ness of unified DiffPoint is verified on single-view and
multi-view 3D reconstruction tasks. Specifically, DiffPoint
outperforms other methods in terms of CD and F-score
metrics for both single-view and multi-view reconstruction.
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DiffPoint: Single and Multi-view Point Cloud Reconstruction with ViT Based
Diffusion Model

Supplementary Material

A. Experimental Setup

We list the experimental setup for DiffPoint-S and DiffPoint-M presented in the main paper in Table 5.
In our experiments, we keep the number of groups and group size same for our three main experiments.
They mainly differ from the number of blocks (depth) and the dimension of token embedding. For
sampling steps, we find that 200 or 1000 steps both works well for all experiments. For fast sampling, it
is better to choose 200 steps.

Table 5. Three experimental setup for DiffPoint in the main paper. ”Per category” means the model is trained on each category separately.
”All categories” means the model is trained on all of categories in the dataset.

Methods DiffPoint-S DiffPoint-M DiffPoint-M

#Training Params 33.06MB 65.23MB 65.23MB
Dataset ShapeNet ShapeNet OBJAVERSE

Training devices 1 V100 1 V100 1 V100
Training strategy Per category All categories All categories

Bachsize 128 128 128
Optimizer AdamW AdamW AdamW

Learning rate 2e-4 2e-4 2e-4
Weight decay 0.03 0.05 0.03

Sampling steps 200 1000 1000
β1 1e-4 1e-4 1e-4
βT 0.05 0.02 0.02

number of input images 1 5 5
embedding dim 384 512 512
number of heads 16 16 16

depth 16 18 18
number of groups 64 64 64

group size 32 32 32
drop path rate 0.1 0.1 0.1

B. Additional Samples
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Result

Figure 6. Generated samples on OBJAVERSE-LVIS dataset.
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