Defense Against Adversarial Attacks on No-Reference Image Quality Models with Gradient Norm Regularization

{yujai liu, dingquanli, ttjiang}@pku.edu.cn; {yangchenxi, djh01998}@stu.pku.edu.cn

<u>No-Reference Image Quality Assessment</u> Methodology • NR-IQA models: predict the quality score of an image without reference. quality score NR-IQA model Theor Applications: media industry, performance evaluation, image compression and so on. Motivation • NR-IQA models are vulnerable to adversarial attacks, and no IQAspecific defense methods have been explored. Adversarial example Original image (low quality) **Finite difference** predicted score: 56.9 predicted score: 32.6 predicted score: 22.0 predicted score: 40.7 small changes to humans, large changes in scores • The robustness of NR-IQA models is related to the gradient norm. **Ablation Studies Problem Definition G**0.9 • Adversarial attacks on NR-IQA can be described as: 8.0CC $\max |f(x+\delta) - f(x)|,$ s.t. $D(x + \delta, x) \leq \varepsilon$, f: an NR-IQA model x: an input image δ : perturbation

 $D(\cdot, \cdot)$: perceptual distance between two images

 ε : the tolerance of human eyes for image differences

04 ack B 20 HyperIOA

Yujia Liu*, Chenxi Yang*, Dingquan Li, Jianhao Ding, Tingting Jiang

NERCVT PKU, National Key Laboratory for Multimedia Information Processing PKU, SMS PKU, Peng Cheng Laboratory

Why to regularize gradient norm?

The magnitude of changes in predicted scores can be approximated by $\|\nabla_{x} f\|_{1}$ when δ is ℓ_{∞} -bounded.

rem 1. Suppose f represents an NR-IQA model,
$$\varepsilon$$
 is the strength of an attack, then

$$\sup_{\substack{\delta: \|\delta\|_{\infty} \leq \varepsilon}} |f(x + \delta) - f(x)| \approx \varepsilon \| \nabla_{x} f(x) \|_{1}$$

Proof. Taylor expansion

$$f(x + \delta) \approx f(x) + \delta^T \nabla_x f(x) \Longrightarrow |f(x + \delta) - f(x)| \approx |\delta^T \nabla_x f(x)|$$

 $|\delta^T \nabla_x f(x)|$ is maximized when $\delta = \epsilon \cdot \operatorname{sign}(\nabla_x f)$

How to regularize gradient norm?

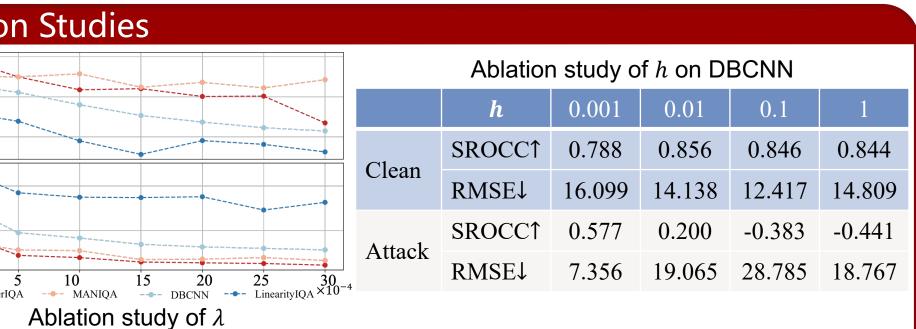
Directly add the gradient norm into the loss function? No

 $L(f,x) = L_{IQA}(f,x) + \lambda \cdot \| \nabla_x f(x) \|_1^2$ Double backpropagation !

$$\nabla_x f(x) \parallel_1 \approx \left| \frac{f(x+h\cdot d) - f(x)}{h} \right| \qquad h \in \mathbb{R}^+: \text{ small step size} \\ d = \operatorname{sign}(\nabla_x f)$$

<u>Norm regularization Training strategy (NT) for robust NR-IQA models:</u>

$$L(f,x) = L_{IQA}(f,x) + \lambda \cdot \left| \frac{f(x+h \cdot d) - f(x)}{h} \right|^2$$

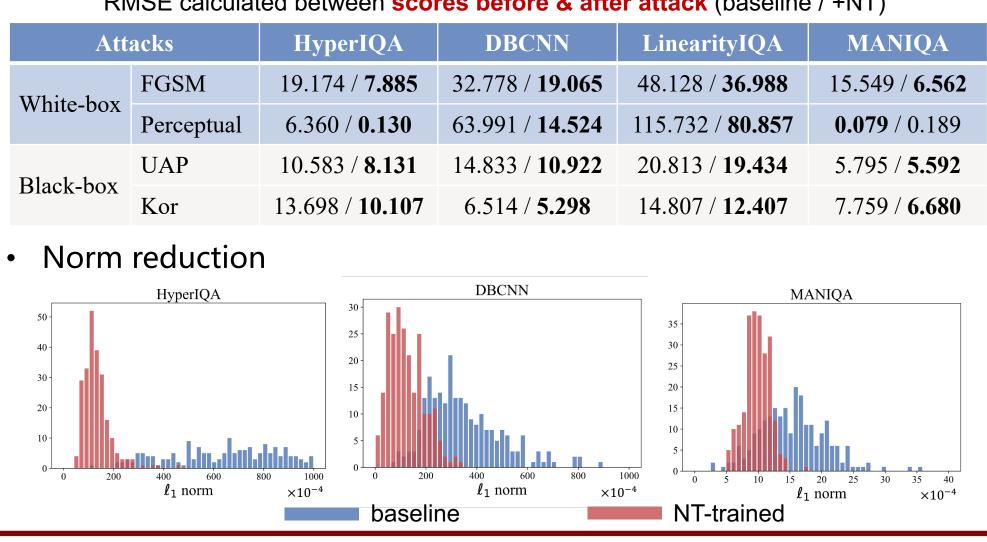


Experiments on the LIVEC dataset

• Performance on clean images

	HyperIQA	DBCNN	LinearityIQA	MANIQA
RMSE↓	9.913 / 12.575	10.897 / 13.140	12.730 / 13.173	26.082 / 23.830
SROCC [↑]	0.899 / 0.859	0.866 / 0.856	0.832 / 0.820	0.876 / 0.871

Robustness improvement



- In theory, prove that the score changes of NR-IQA models are related to the ℓ_1 norm of the gradient.
- In practice, apply the theory to improve the robustness of NR-IQA models.

code

Performance calculated between **predicted scores & MOS** (baseline / +NT)

RMSE calculated between **scores before & after attack** (baseline / +NT)

HyperIQA	DBCNN	LinearityIQA	MANIQA
19.174 / 7.885	32.778 / 19.065	48.128 / 36.988	15.549 / 6.562
6.360 / 0.130	63.991 / 14.524	115.732 / 80.857	0.079 / 0.189
10.583 / 8.131	14.833 / 10.922	20.813 / 19.434	5.795 / 5.592
13.698 / 10.107	6.514 / 5.298	14.807 / 12.407	7.759 / 6.680

Conclusion

Future Works

- More explorations on Full-Reference IQA models.
- More effective defense on SROCC, PLCC and KROCC.
- Less performance drop on clean images.