Defense Against Adversarial Attacks on No-Reference Image Quality Models with Gradient Norm Regularization

« NR-IQA models predlct the quality score of an image without
reference.

NR-IQA model quality score

« Applications: media industry, performance evaluation, image
compression and so on.

Motivation

« NR-IQA models are vulnerable to adversarial attacks, and no IQA-
speC|f|c defense methods have been explored.
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small changes to humans, large changes in scores

« The robustness of NR-IQA models is related to the gradient norm.

Problem Definition

« Adversarial attacks on NR-IQA can be described as:
max|f(x + 8) — f(x)], s.t. D(x +8,x) <,
f:an NR-IQA model x:an input image §: perturbation

D(-,): perceptual distance between two images

e: the tolerance of human eyes for image differences
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Methodology

Why to regularize gradient norm?

The magnitude of changes in predicted scores can be approximated by
IV..fll when 6 is £, -bounded.

Theorem 1. Suppose f represents an NR-IQA model, € is the strength of an attack, then
sup | f(x+6) —f)l = el Vef () Iy
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Proof. Taylor expansion
flc+8) = f(x) + 8" Vf(x) = |f(x +8) — f(x)| = 8"V f (X))
|67V, f(x)] is maximized when § = € - sign(V,f) -

How to regularize gradient norm?

Directly add the gradient norm into the loss function? No

L(f,x) = Liga(f,x) + A1 Voo f (x) 115
Finite difference

IV f (o) Nl ~ flx+h -:) — f(x) Z ili;:n?rvnxafll)step size

Double backpropagation !

Norm regularization Training strategy (NT) for robust NR-IQA models:

f+h-d)—f@|
h

L(f,X) = LIQA(f'x) + A

Ablatlon Studies
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Clean
RMSE!l 16.099 14.138 12.417 14.809

SROCCT 0.577 0.200 -0.383 -0.441
Attack

253 RMSE!  7.356 19.065 28.785 18.767

MANIQA DBCNN --®- Line

Ablation study of 4

Experiments on the LIVEC dataset

« Performance on clean images
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Performance calculated between predicted scores & MOS (baseline / +NT)

| HyperlQA DBCNN LinearityIQA | MANIQA

RMSE!
SROCCT

9.913 / 12.575
0.899 /0.859

« Robustness improvement

10.897 / 13.140
0.866 / 0.856

12.730/13.173
0.832/0.820

26.082 /23.830
0.876 / 0.871

RMSE calculated between scores before & after attack (baseline / +NT)

Attacks HyperlQA DBCNN LinearitylQA MANIQA

FGSM 19.174 / 7.885
6.360/0.130
10.583 / 8.131

13.698 /10.107

White-box
Perceptual

UAP
Kor

Black-box

« Norm reduction

HyperlQA

32.778 /19.065

63.991/14.524

14.833/10.922
6.514/5.298

48.128 / 36.988
115.732 / 80.857
20.813/19.434
14.807 / 12.407

15.549 / 6.562
0.079/0.189
5.795/5.592
7.759 / 6.680

MANIQA
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Conclusion

In theory, prove that the score
changes of NR-IQA models are
related to the £; norm of the
gradient.

In practice, apply the theory to
improve the robustness of NR-IQA
models.
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Future Works

More explorations on Full-
Reference IQA models.
More effective defense on
SROCC, PLCC and KROCC.
Less performance drop on
clean images.



