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Abstract. In this paper, a new perspective is presented for skeleton-
based action recognition. Specifically, we regard the skeletal sequence
as a spatial-temporal point cloud and voxelize it into a 4-dimensional
grid. A novel sparse 4D convolutional network (SC4D) is proposed to
directly process the generated 4D grid for high-level perceptions. With-
out manually designing the hand-crafted transformation rules, it makes
better use of the advantages of the convolutional network, resulting in
a more concise, general and robust framework for skeletal data. Besides,
by processing the space and time simultaneously, it largely keeps the
spatial-temporal consistency of the skeletal data, and thus brings better
expressiveness. Moreover, with the help of the sparse tensor, it can be
efficiently executed with less computations. To verify the superiority of
SC4D, extensive experiments are conducted on two challenging datasets,
namely, NTU-RGBD and SHREC, where SC4D achieves state-of-the-art
performance on both of them.
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1 Introduction

Action recognition is a popular research topic because it can be applied to
many practical fields such as human-computer interaction and video surveil-
lance [2,22,5,19]. In recent years, skeleton-based action recognition has drawn
considerable attentions due to its small amount of data, higher-level semantic
information and strong robustness for complicated environment [32,12,21]. In
detail, the skeletal data is generally a sequence of frames each contains the po-
sition information of the human body joints, which is expressed as the 2D/3D
coordinates of the camera coordinate system. It totally removes the background
information, and thus it focuses more on the human body itself. Recently, with
the success of the deep leaning, the data-driven methods have become the main-
stream for skeleton-based action recognition. In most of the existing neural-
network-based approaches, the joint coordinate is viewed as the attribute of
each element, and various hand-crafted strategies are designed to transform these
joints into various specific forms such as pseudo-images or graphs to feed them
into RNNs [8,26], CNNs [12,1] or GCNs [32,20] for feature extraction.
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Generally speaking, the GCN-based method, which structures the skeletal
data as a spatiotemporal graph and feeds it into the graph convolutional net-
work, shows great effectiveness and better performance. However, recent works
found that parameterizing the graph topology performs better than using the
fixed human-body-based graph [21,9]. It means the prior-knowledge-based graph
structure is not the key of the success of the GCN-based method for skeletal data.
Its success may largely owes to the great generalizability and robustness of the
convolutional network. Thus, the GCN-based method is essentially the same
with the CNN-based method, which tries to design rules to transform the skele-
tal data into a CNN-suitable form. However, there are three limitations for these
methods: (1) Manually designed rules are not guaranteed to be an optimal choice
due to the human factor. Although some works propose to learn these rules in
the training process, it still more or less limits the flexibility of the model. For ex-
ample, some works try to learn the graph topology, but the graph is still shifted
based on the human-body-based graphs and is limited by the hand-crafted graph
generation mechanism [21,9]. Besides, the raw skeletons exist in the metric space
(3D coordinate system) with a class-specific pattern, which are naturally suitable
for grid-based convolutional networks. It is unnecessary to still force a learning
of the transformation rules for convolutions in such a data-driven framework. (2)
Skeletal data is more fixed compared with other graph-structured data such as
social networks or physical molecules. Its every element possesses a specific phys-
ical/semantic meaning, i.e., different human joints such as feet or hands, which
is constant for various data samples. However, the convolution is weight-shared.
Thus, the fixed rules force the convolutional model to mine constant interaction
patterns for different joints and its neighbors of different samples, which limits
the model’s flexibility and capacity. There are also some works trying to avoid
constant contributions by permuting the arrangement of joints [1] or multiplying
attention weights for every joints [32], but they are treating symptoms and not
the root cause. (3) In previous works for skeletal data, the position information
is employed as features while the hand-crafted rules are used to organize con-
volutional operations. It is somewhat conflicted with the translation-invariant
character of the convolutional network. Since the input is position-variant, once
the skeleton is shifted a little bit, the extracted features also become completely
different. This reduces the robustness and the generalizability of the model.

Instead, a new perspective is proposed in this work for skeleton-based action
recognition. We regard the skeletal sequence as a spatial-temporal point cloud
and voxelize it into a 4D grid. Similar to the RGB values of image pixels, each
voxel is attached with a feature vector that denotes whether there is a joint
in this position and which joint it is. Different with previous works, it needs
no manual designs of transformation rules and can better utilize the power of
the data-driven mechanism. By performing convolution on 4D grid, the weight-
sharing mechanism is no longer worked for the fixed relation structure, which
avoids constant contributions for different joints and its neighbors of different
samples. Besides, the position information is not included in the feature vector,
and thus it is more robust for position translation.
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Besides, different with most existing methods that process the skeletal se-
quence frame by frame, we directly construct a 4D convolutional network to
process the generated 4D grid. It hierarchically extracts the spatial-temporal
features from low-levels to high-levels, which largely keeps the spatial-temporal
consistencies of the skeletal data. To construct 4D convolutional networks, a
naive method can be directly expanding the 3D convolutional kernels to 4D.
However, due to the additional temporal dimension of the kernel, it has a large
amount of computational cost. Since the skeletal data is very sparse, we propose
to employ the sparse tensor and the sparse convolution to reduce the computa-
tional cost inspired by [4]. It only tracks the non-empty voxels of the 4d grid,
along with their position information and associated feature vectors. The convo-
lutional operation is performed on these sparse voxels hierarchically, which gen-
erates the sparse output accordingly. It can generate similar results compared
with the dense convolution, but it is more efficient and needs less computations.

Moreover, to further improve the performance, we propose three data aug-
mentation techniques. First, we suggest to interpolate points along bones, which
can utilize the prior knowledge of the human body and make it more distinctive.
The number of interpolations are determined based on the average length of
the bones in the human body. Second, since the skeletal joint is very sparse, a
dilation technique is used to enhance the spatial pattern to ease the recognition.
The values of the new added points are reduced proportionally to distinguish
them from the original joints. Third, as shown in previous methods [21], the bone
information and the motion information are effective for skeleton-based action
recognition. To also exploit them for our voxelization-based methods, we propose
to transform the input from the coordinate space into the bone space and the
motion space. By modeling the information of the three spaces with multiple
streams and finally fusing the results, the performance is further improved.

The proposed method, namely, the sparse 4D convolutional network (SC4D),
is a general framework for skeletal data. To verify the effectiveness of SC4D,
extensive experiments are conducted on two popular datasets for different tasks,
i.e., NTU-RGBD for action recognition and SHREC for gesture recognition.
Although it is the first try to voxelize skeletons into a 4D grid, SC4D achieves
state-of-the-art performance on both datasets, which illustrates that it is an
effective method and a valuable-researched perspective.

Overall, our contributions lie in three aspects:

1. We propose a new perspective for skeleton-based action recognition, where
the skeletal data is voxelized into a 4d grid and is directly processed with
a sparse 4D convolutional network. The proposed framework is effective,
concise, robust, and efficient.

2. Two data enhancement strategies are proposed to augment the generated
skeletal grid to ease the recognition. We further transform the coordinate
data into two other spaces, i.e., the bone space and the motion space, to
utilize their complementarity to better recognize the human action.
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3. The final model achieves state-of-the-art performance on two challenging
datasets for different tasks. The code will be released to facilitate future
works.

2 Related works

2.1 Skeleton-based action recognition

Skeleton-based action recognition has been studied for decades. Early-stage ap-
proaches concentrate on designing variable hand-crafted features [31]. With
the rise of deep learning, the mainstream approaches in recent years lie in
three aspect: (1) the RNN-based approaches where the skeleton sequence is
fed into the RNN models and the joints are modeled in a predefined traver-
sal order [35,10,25,24]. (2) the CNN-based approaches where the skeleton se-
quence is transformed into a pseudo-image and are fed into the CNNs for recog-
nition [8,12,1]. (3) the GCN-based approaches where the skeleton sequence is
encoded into a spatiotemporal graph according to the physical structure of the
human body and is modeled with GCNs [32,28,21,20]. In contrast to previous
works, we project the sparse joints into a 4D grid and employ a sparse 4D con-
volutional network to extract features and make predictions.

2.2 Perception tasks based on 3D point cloud

Here, since we regard the skeletal data as point clouds, we introduce some recent
works for perception tasks based on the 3D point cloud. There have been many
works investigating how to model the point cloud with deep neural networks.
Some works exploit the metric space distance to aggregate features from local to
global in a hierarchical manner [17,23]. Some works transform the original data
into other forms such as surface [14], octree [18] or sparse lattice [27], which are
modeled with low-dimension neural networks. Some works perform the volumet-
ric representation for point cloud. For example, Tchapmi et al. [29] project the
raw point cloud data into 3D volumes and employ 3D convolutional networks
for 3D segmentation. It should be note that for many tasks, the point cloud is
video-based, and thus have an additional temporal dimension. For these tasks,
one strategy is to process the video frames sequentially and finally aggregate the
temporal features. For example, You et al. [34] represent multiple peoples ac-
tions captured by depth cameras as a sequence of point-cloud-based volume and
process the volumes frame by frame with a 3D convolutional network. Another
strategy is to directly model the videos in a 4D manner. For example, Choy et
al. [4] project the sequence of 3D scans into a 4D tesseract and introduce a 4D
sparse spatiotemporal convolutional network to extract features for 3D video
segmentation. This work follows the voxelization-based methods.
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Fig. 1. Pipeline overview.

3 Methods

3.1 Pipeline Overview

Fig. 1 shows the pipeline of our method. Skeletal data can be obtained by motion-
capture devices or pose estimation algorithms from videos. It is first normalized
and voxelized into a 4D grid. Then the generated grid is directly processed
with a sparse 4D convolutional network, which hierarchically extracts semantics
from the 4D grid and outputs the high-level feature maps. Finally these feature
maps are global-average-pooled and classified with the SoftMax classifier. The
following sections will go over these steps.

3.2 Voxelization

The raw skeletal data is a sequence of frames, each of which records the Carte-
sian coordinates of the human joints in the current frame. It is formulated as
a set of joint coordinates as {Rraw

t,m,n : Rraw
t,m,n ∈ RCcoor , t = 1, 2, · · · , T,m =

1, 2, · · · ,M, n = 1, 2, · · · , N}, where T , M and N denote the number of frames,
persons and joints defined in the data acquisition system, respectively. In the rest
of the paper, Ccoor is default to 3, i.e., the joints are obtained in a 3D coordinate
system.

Voxelizing these joint coordinates into a 4D grid is equivalent to calculat-
ing the new coordinates of these joints in the 4D-grid-based coordinate system.
First, we add the temporal coordinate for every joints, i.e., Rraw

t,m,n ∈ R3 →
R4d
t,m,n ∈ R4. The dimension order of the 4D coordinate system is default to

time-z-y-x, which means R4d
t,m,n(1), R4d

t,m,n(2), R4d
t,m,n(3) and R4d

t,m,n(4) denote
the t-coordinate, z-coordinate, y-coordinate and x-coordinate, respectively. The
temporal coordinate is set as the index of frames, i.e., R4d

t,m,n(1) = t.

Then, we normalize the coordinate into the range of zero to the grid size. In
detail, we use S ∈ R4 to denote the grid shape, e.g., S = [32, 32, 32, 32]. S(i)
denotes the grid size of the coordinate dimension i, where i = 1, 2, 3, 4. R4d

t,m,n
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(a) Origin (b) Bone interpolation (c) Dilation

Fig. 2. Examples of two data enhancement techniques: bone interpolation and dilation.

is normalized to Rnor
t,m,n by:

Rnor
t,m,n(i) =

R4d
t,m,n(i)− min

∀t,m,n
{R4d

t,m,n(i)}

max
∀t,m,n

{R4d
t,m,n(i)} − min

∀t,m,n
{R4d

t,m,n(i)}
× S(i) (1)

Finally, since the coordinate should be integer, the final coordinate of the joints
in the 4d grid Rjpt

t,m,n is obtained by Rjpt
t,m,n = floor(Rnor

t,m,n + 0.5), where floor
means rounding down float coordinates to integers.

3.3 Feature Representation

After the voxelization process, we know the positions of all the joints in the
4D grid. Now we attach a feature vector for every joints to identify it. This
is similar with the word embedding process of the NLP field, where words or
phrases from the vocabulary are mapped to vectors of real numbers. In detail,
Rjpt
t,m,n is attached with a feature vector Fjptt,m,n ∈ RCfea . In this work, we propose

three strategies for embedding. The first strategy is setting the feature of the
voxels that are occupied by joints as 1 and setting the feature of other voxels as
0. It means Cfea = 1. However, this strategy cannot tell which joint occupies the
current voxel, and thus the information of the joint semantics is lost. The second
strategy is Cfea = M +N . The first M elements construct a one-hot vector that
indicates whether the current voxel is occupied by the joint of the mth person.
Similarly, the lastN elements indicates whether it is the nth joint. In formulation,
Fjptt,m,n(i) = I{i == m||i == M + n}, where i = 1, 2, · · · , Cfea. || denotes “or”.
If the expression is true, I{expression} = 1, otherwise I{expression} = 0.
However, it can not distinguish the situation that the joints of multiple persons
falling into a same voxel. The third strategy is Cfea = MN . If the current voxel

is the nth joint of the mth person, Fjptt,m,n(i) = 1, otherwise Fjptt,m,n(i) = 0. In

formulation, Fjptt,m,n(i) = I{i == (n+m×N)}. The third strategy is competent
for more situations, but it needs more data volumes. In the following paper, we
use the third strategy.

3.4 Data Enhancement

The number of human joints are generally small. We propose two spatial feature
enhancement techniques to augment the local patterns as shown in Fig. 2. The
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first strategy is interpolating points along the human bones, which are defined
as the natural connections of the human body. Usually the human body can be
viewed as a tree structure [33,11]. Thus, the number of bones is one less than the
number of joints. For example, Fig. 4 shows the definition of the joints and bones
for the two datasets. First, we count the average length of every bones in the
dataset. The bone with the shortest length is defined as the basic bone, which
means the number of interpolated points for this bone is one. Then, the number
of interpolated points for other bones are determined by the multiples of their
lengths to the length of the basic bone. The points are uniformly interpolated in
the segment between the two end joints of the bone. For example, if the length
of the basic bone is 2 and the length of the forearm is 10, we will uniformly
interpolate 5 points in the segment between the wrist and the elbow. As for
the features of the new interpolated points, they are calculated by the weighted
sum of the features of two end joints, where the weight is inversely proportional
to its distance from the corresponding end joint. In formulation, the number of
bones is B = N − 1. The number of the interpolated joints for every bones,
i.e., J ∈ RB , is calculated by above strategies. J(b) denotes the number of the
interpolated joints of the bth bone, where b = 1, 2, · · · , B denotes the bone index.
A map I ∈ RB×2 is defined to record the indices of the two end joints of every
bones. I(b, 1) and I(b, 2) are the indices of two end joints of the bth bone, i.e.,
I(b, 1), I(b, 2) ∈ {1, 2, · · · , N}. The coordinate and the feature of the interpolated
point are represented as Rinter

t,m,b,j ∈ R4 and Fintert,m,b,j ∈ RCfea , respectively, where
j = 1, 2, · · · ,J(b) denotes the indices of the interpolated points of the bth bone.
Given Rjpt

t,m,n and Fjptt,m,n, they are calculated as:

Rinter
t,m,b,j = Rjpt

t,m,I(b,1) + floor(
Rjpt
t,m,I(b,2) −Rjpt

t,m,I(b,1)

J(b) + 1
× j + 0.5)

Fintert,m,b,j = Fjptt,m,I(b,1) × (1− j

J(b)
) + Fjptt,m,I(b,2) ×

j

J(b)

(2)

The second strategy is the spatial dilation. We expand the coordinate of one
point along all its spatial dimensions according to the dilation number. Using the
1D data as an example, assume there is one point in position 2, after dilating it
with the dilation number 1, there will be three points in the position 1, 2 and 3.
For simple, when performing dilation on one dimension, the coordinates of other
dimensions are kept the same as before. The features of the new dilated points are
the same with the original points, but it is divided by a scale, which is inversely
proportional to its distance from the original point. In formulation, given the
dilation value Σ, the number of the new added points of one person in one
frame along the coordinate dimension c is Dc = 2ΣN ′. c ∈ {2, 3, 4} because that
dilation is only performed along spatial dimensions.N ′ denotes the number of the
original points, e.g., N ′ = N +

∑B
b J(b) if the bone interpolation is performed.

Then, the coordinate and the feature of the dilated point are represented as
Rdil
t,m,c,d ∈ R4 and Fdilt,m,c,d ∈ RCfea , where d = 1, 2, · · · , Dc denotes the index

of the new dilated points along the coordinate dimension c. Given Rjpt
t,m,n and
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Fjptt,m,n, they are calculated as:

σ = ceil(
(d− 1)%(2N ′) + 1

2
)

φ = ceil(
d

2σ
)

Rdil
t,m,c,d(i) = Rjpt

t,m,φ(i) + (−1)d × σ × I{i == c}

Fdilt,m,c,d = Fjptt,m,φ/σ

(3)

where i = 1, 2, 3, 4 denotes the index of the coordinate dimension of the dilated
points. σ ∈ {1, 2, . . . , Σ} denotes the distance from the new dilated points to the
original point. φ ∈ {1, 2, . . . , N} denotes the index of the corresponding original
point in the current dilation step. % denotes calculating remainder. Ceil means
rounding up the float coordinates to integers.

3.5 Dense Convolution versus Sparse Convolution

After the voxelization and the data enhancement, we remove the duplicate points
that fall into the same voxel. In detail, we simply keep the first one during the
traversal of points. Now the raw skeletal joint coordinate has been transformed
into a coordinate vector of the 4d grid Rin

n ∈ R4 and a corresponding feature
vector Finn ∈ RCfea , where n = 1, 2, · · · , Nin, Nin denotes the total number
of points after performing the data enhancement techniques and removing du-
plications. Then, the problem is how to process them with neural networks.
The conventional method is updating the traditional 3D CNNs to 4D CNNs by
expanding the convolutional kernel dimension to 4, which we called dense con-
volution. Specifically, we create a 5D tensor Fden ∈ RS(1)×S(2)×S(3)×S(4)×Cfea to
represent a 4D grid and fill its values based on Rin

n and Finn . S ∈ R4 denotes the
grid shape. Fden can be directly fed into a 4D CNN.

However, because most of the elements in the generated 4D grid are 0, it is
unnecessary to perform convolutions for every elements, which in practice causes
the waste of computations and GPU memory. Instead, we consider to use the
sparse tensor to reduce the computations. We follow the method introduced in
[4]. To perform convolution or other operations sparsely, the key is to obtain a
mappingM to identify which input affects which output according to the input
coordinates Rin

n and the operation definitions. It is defined as pairs of lists of
input indices Iin ∈ RNin , output indices Iout ∈ RNout and weight indices Iwei ∈
RNwei (optional), i.e.,M = {(Iin(i), Iout(j), Iwei(k))} where i ∈ {1, 2, · · · , Nin},
j ∈ {1, 2, · · · , Nout} and k ∈ {1, 2, · · · , Nwei}. Then the output is calculated ac-
cording to the inputs (Rin

n and Finn ), the weight (W(opt.)), the mapping (M) and
the definition of the operation (f ), i.e., Rout

n ,Foutn ←− f (Rin
n ,F

in
n ,W(opt.),M).

For convolutional operation, the input features are multiplied with the corre-
sponding weights, and then added to the corresponding output features based
on M. For pooling-based operations such as max-pooling and global-average-
pooling, weights are not needed. The input features are gathered and directly
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reduced based on M to get the output features. For non-spatial functions such
as Batch Normalization and ReLu, we can directly use the 1D dense operation
on the input features.

3.6 SC4D
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Fig. 3. Architecture of the SC4D. Each convolution is appended with a Batch Normal-
ization layer and a ReLU layer. K denote the kernel size. C denote the basic number
of filters.

After defining these operations, we can now build the network only with gen-
eralized sparse operations. With extensive experiments, the architecture of the
sparse 4D convolutional network (SC4D) for skeleton-based action recognition
is built as shown in Fig 3. It is inspired by the C3D network [30]. All layers
are built with sparse operations. There are totally 9 sparse convolutional layers.
Each sparse convolution is appended with a sparse Batch Normalization layer
and a sparse ReLU layer. The kernel size is 1 for the first layer and K for others.
The number of filters are C, C, 2C, 4C, 4C, 8C, 8C, 8C, 8C, respectively. Both
K and C can be adjusted to balance the model size and the performance. The
first sparse convolutional layer serves as an embedding layer to embed the one-
hot features into the feature space. The residual connections are added for every
convolutions except for the first one to ease the gradient passing following [6].
Sparse max-pooling layer is added after the 2nd, 3rd, 5th and 7th convolutional
layers. The stride of the max-pooling is 2 for all dimensions. If the input grid size
is too small, the first several pooling layers will be removed to save the resolu-
tion. A sparse global-average-pooling layer and a sparse fully-connected layer is
added in the end to make predictions. Dropout is used before the fully-connected
layer to avoid overfitting.

3.7 Multiple-Streams

Previous methods have shown that apart from the position information, the bone
information and the motion information of the skeletal data are also helpful for
action recognition [21]. Here, we transform the raw skeletal data from the co-
ordinate space into the bone space and the motion space to utilize these two
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types of information. In detail, for bone information, given the raw joint coordi-
nate Rraw

t,m,n ∈ R3 of the original space, we first calculate the corresponding raw

coordinate Rbraw
t,m,b ∈ R3 of the bone space by:

Rbraw
t,m,b = Rraw

t,m,I(b,1) −Rraw
t,m,I(b,2) (4)

where b = 1, 2, · · · , B. The map I ∈ RB×2 records the indices of the two end
joints of every bones. Then, similar with the procedure of voxelizing Rraw

t,m,n intro-

duced in Sec. 3.2, Rbraw
t,m,b is voxelized into a bone-space-based 4D grid, resulting

in the sparse bone-space-based coordinate vector Rbone
t,m,b and the corresponding

feature vector Fbonet,m,b. F
bone
t,m,b is same as Fjptt,m,n.

Similarly, the raw coordinate Rmraw
τ,m,n ∈ R3 of the motion space is obtained

by:
Rmraw
τ,m,n = Rraw

t+1,m,n −Rraw
t,m,n (5)

where τ = 1, 2, · · · , T−1. It is also voxelized into a motion-space-based 4D grid,
resulting in Rmotion

τ,m,n and Fmotionτ,m,n . Both the bone information and the motion in-
formation are modeled with two additional networks with the same architecture
as SC4D. The SoftMax scores of three streams are averaged to get the final
prediction.

4 Experiments

4.1 Datasets and Training Details

We specially select two datasets, namely, NTU-RGBD and SHREC, with differ-
ent tasks to show the generalizability of our model.

NTU-RGBD consists of 56,000 action clips in 60 action classes. Each action
is captured by 3 cameras. It provides 3D joint locations of 25 joints detected by
Kinect-V2 depth sensors as shown in Fig. 4, left. Each video has no more than 2
subjects. Because the accuracy of the cross-view benchmark is nearly saturated,
we conduct experiments on the cross-subject benchmark of the dataset, where
the training and testing sets are split based on different subjects. Since the whole
dataset is large and the training is time-consuming, we extract a subset of NTU-
RGBD, namely, NTU-RGBD-SUB, for ablation studies. Specifically, because the
samples are captured by 3 camera, the samples captured by the first camera are
used to form the NTU-RGBD-SUB.

SHREC contains 2800 gesture sequences performed by 28 subjects in two
ways: using one finger to perform gestures or using the whole hand to perform
gestures. It provides the 3D coordinates of 22 hand joints captured by Intel-
Real-Sense depth camera as shown in Fig. 4, right. This dataset has once been
used for the competition of SHREC’17 in conjunction with the Eurographics
3DOR’2017 Workshop, and thus it reflects the highest level in this field.

All experiments are conducted on the PyTorch deep learning framework [15].
Stochastic gradient descent (SGD) with Nesterov momentum (0.9) is applied as
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Fig. 4. Illustration of the joint index and the bones for (a) NTU-RGBD dataset and
(b) SHREC dataset.

the optimization strategy. The batch size is set to 32. Cross-entropy is selected as
the loss function to back-propagate gradients. The weight decay is set to 0.0005.
Warm up is used with 5 epochs. Drop out rate is 0.2. To avoid overfitting, the
voxelized skeletons are randomly rotated and scaled for spatial dimensions. The
rotation range is [-10, 10]. The scale range is [0.8, 1.2].

Before the voxelization introduced in Sec. 3.2, the data is first preprocessed
inspired by [21]. The center joint of each skeleton is set as the origin of the
coordinate. It is the joint #1 for both NTU-RGBD and SHREC as shown in
Fig. 4. Besides, for NTU-RGBD dataset, the skeletons are rotated to the same
viewpoint to reduce the intra-class variations. In detail, we keep the line between
the joint #9 and the joint #5 parallel with the x axis, and the line between the
joint #1 and the joint #2 parallel with the z axis.

4.2 Ablation Study

Ablation studies are conducted on NTU-RGBD-SUB. Firstly, we investigate the
strategies of the feature representation introduced in Sec. 3.3. We update the
C3D network [30] to C4D by simply expanding the dimension of the kernel from
3 to 4. Others are kept the same as before. Due to the GPU memory limitations,
we set the grid size to 16 (same for all dimensions) and the number of basic
channels to 16, i.e., the output channels of 8 convolutional layers in C4D is 16,
32, 64, 64, 128, 128, 128, 128. Tab. 1 shows the results of the three strategies,
where S3 performs better as expected.

Then, we replace the dense convolution with the sparse convolution to see the
difference. To keep the comparison fair, instead of using the final SC4D showed in
Fig. 3, we use a C4D-comparable model named “Sparse C4D” for comparison,
whose architecture is the same with C4D except for the sparse operation. As
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Table 1. Action recognition performance for different feature representation strategies.
S1, S2 and S3 correspond to the strategies introduced in Sec. 3.3 sequentially.

Strategy Acc. (%)

S1 80.6
S2 81.7
S3 82.3

shown in Tab 2, using dense C4D achieves only a little better than using sparse
C4D. But the sparse C4D largely saves the computations. For dense C4D, it
needs 4 TITANXP GPUs to train the model using the PyTorch framework. But
for sparse C4D, it needs only one-tenth memory of one GPU.

Table 2. Comparison of the dense convolution and the sparse convolution.

Methods Acc. (%)

Dense C4D 82.3
Sparse C4D 82.1

Now that we can save a large amount of GPU memories by using the sparse
convolution, we use the network architecture showed in Fig. 3, i.e., SC4D, for
experiments in the rest experiments. Compared with sparse C4D, residual con-
nections are added for every convolutional layers. A feature embedding layer is
added at the beginning. The basic number of filters is set to 32, i.e., C=32. The
basic kernel size is 3, i.e., K=3. With these designations, SC4D performs better
than sparse C4D. Then, we investigate the effect of the grid size as shown in
Tab. 3. “Overlap” denotes the ratio of the number of points in sparse tensor to
the number of original points. It reflects the degree of different joints falling into
the same voxel, which causes the loss of information. It is 100% when there are
no different joints falling into the same voxel. The result shows that properly
increasing the grid size can improve the performance (Size=16 vs Size=32 vs
Size=64). We found that using larger grid can reduce the overlaps of the joints.
Thus, it can keep more useful information. However, it can not be increased
too large (Size=64 vs Size=128). It is because along with the increasing of the
grid size, the distance between the points also grows, which brings difficulties
for relation modeling with the fix-size convolutional kernel.

The most important two factors that affect the model performance is the
kernel size and the number of filters. Tab. 4 lists the performance of different
configurations for the kernel size and the number of filters. The gird size is
fixed to 32. It shows that increasing the kernel size improves the performance
especially when the original kernel size is small (K=3 vs K=4 vs K=5). We
believe it is because the large kernel size can help covering more points so that
capture more information in one convolutional step. The improvement decreases
or even becomes negative when the original kernel size is already large enough
(K=5 vs K=6). It is because the larger kernel size also brings more parameters
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Table 3. Action recognition performance for different grid sizes. “Overlap” denotes
the ratio of the number of points in sparse tensor to the number of original points. It
is 100% when there no different joints falling into the same voxel.

Grid size Acc. (%) Overlap (%)

Size=32 87.9 98.6
Size=16 86.6 93.1
Size=64 88.8 99.7
Size=128 88.5 99.9

that causes the difficulty for network training. The similar phenomenon is also
observed for the number of filters (C=32 vs C=64 vs C=128).

Table 4. Action recognition performance for different kernel size (K) and the number
of filters (C). K and C are corresponded with Fig. 3.

Configuration Acc. (%)

K=3, C=32 87.9
K=4, C=32 89.0
K=5, C=32 90.2
K=6, C=32 89.8
K=3, C=64 89.1
K=3, C=128 89.4

Then, we test the effectiveness of two data enhancement strategies introduced
in Sec. 3.3. The grid size is increased to 64 to make the grid more sparse. Tab. 1
shows that both of the two strategies bring improvement. However, since the
number of points is also increased, the data becomes denser and it needs more
computations and memories.

Table 5. Action recognition performance for different data enhancement strategies.

Strategy Acc. (%)

no enhancement 88.8
+edge 88.9
+edge&dilate 89.7

Finally, we investigate the effectiveness of the three streams introduced in
Sec. 3.7. They are processed by three networks with the same architecture, i.e.,
SC4D. The SoftMax scores are fused to get the final prediction. It shows using
the bone information or the motion information performs worse than the original
data, but fusing three streams can largely improve the performance.
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Table 6. Action recognition performance for different streams.

Modality Acc. (%)

joint 88.8
bone 86.9
motion 81.5
fusion 90.7

4.3 Comparison with the SOTA

Although many strategies have been shown effective for improving the perfor-
mance such as increasing the kernel size or the number of filters, due to the
GPU memory limitations, we have to made some trade-offs. Finally, the kernel
size of the SC4D is set to 3 for the temporal dimension and 5 for the spatial
dimensions. The basic number of filters is 64, i.e., C=64. Grid size is 64 for
NTU-RGBD dataset and is 32 for SHREC dataset because the “overlap” (intro-
duced in Tab. 3) of the 32×32×32×32 grid already reaches 99.7% for SHREC.
The bone interpolation strategy is used for the joint stream. We test our final
model on two datasets: NTU-RGBD for action recognition and SHREC for ges-
ture recognition. The results are showed in Tab. 7 and Tab. 8, where our SC4D
achieves state-of-the-art performance on two datasets. More comparisons are
showed in supplement materials. It verifies the effectiveness and generalizability
of our method.

Table 7. Comparison with the state-of-art-methods on NTU-RGBD dataset.

Method Year Acc. (%)

AGC-LSTM [24] 2019 89.2
2s-AGCN [21] 2019 88.5
DGNN [20] 2019 89.9

Bayesian-GCN [36] 2020 81.8
NAS [16] 2020 89.4

SC4D (ours) - 90.5

Table 8. Comparison with the state-of-art-methods on SHREC dataset.

Method Year 14 gestures 28 gestures

ST-GCN [32] 2018 92.7 87.7
STA-Res-TCN [7] 2018 93.6 90.7

ST-TS-HGR-NET [13] 2019 94.3 89.4
DG-STA. [3] 2019 94.4 90.7

SC4D (ours) - 95.8 93.6
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5 Conclusion

In this work, we propose a new perspective for skeleton-based action recogni-
tion, where the skeletal data is viewed as a point cloud and is voxelized into
a 4d grid for recognition. A novel sparse 4D convolutional network (SC4D) is
proposed to directly model the 4D grid, which largely keeps the spatial-temporal
consistencies of the skeletal data. The overall framework is concise, robust, and
efficient due to the sparse operation. Besides, two data enhancement techniques
are introduced to augment the spatial pattern and ease the recognition. The data
is additionally projected into two other spaces to utilize the bone information
and the motion information for better performance. Our method achieves state-
of-the-art performance on two challenging datasets for different tasks, which
confirms its effectiveness and generalizability.
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