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Abstract

Skeleton-based action recognition has attracted more
and more attention in recent years. Besides, the rapid de-
velopment of deep learning has greatly improved the per-
formance. However, the current exploration of action co-
occurrence is still not comprehensive enough. Most existing
works only mine co-occurrence features from the temporal
or spatial domain seperately, and it’s common to combine
them in the end. Different from previous works, our ap-
proach is able to learn temporal and spatial co-occurrence
features integratedly and globally, which is called spatio-
temporal-unit feature enhancement (STUFE). In order to
better align the skeleton data, we introduce a novel method
for skeleton data preprocessing called active coordinate
system conversion (ACSC). A coordinate system can be
learned automatically to transform skeleton samples for
alignment. By the way, the proposed methods are com-
patible with current two types of mainstream models, the
CNN-based and GCN-based models. Finally, on the two
benchmarks of NTU-RGB+D and SBU Kinect Interaction,
we validated our methods based on two mainstream models.
The results show that our methods achieve the state-of-the-
art.

1. Introduction

In the past few years, human action recognition has be-
come an active area of research, due to its wide appli-
cations, ranging from surveillance to human-computer in-
teraction and virtual reality. Human pose, also known as
skeleton, can be used as a kind of data modality for ac-
tion recognition. Unlike RGB video, human skeleton se-
quences can provide very effective information only with
a limited amount of data. [9] first verified the validity of
skeletal sequence on discriminant actions from a biological
perspective. Now there are many devices can directly pro-
vide solutions for real-time skeleton sequence output. In-
tel RealSense [11] and Microsoft Kinect [36] are the most
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Figure 1: This is an overview of our approach at the data flow
level. Take the original skeleton data as input, then pass ACSC
and STUFE, and finally complete the classification.

commonly used. The popularity of these devices has greatly
enhanced the utility of skeleton-based action recognition.

Preprocessing of skeleton datas is common in skeleton-
based action recognition. Most of these operations are de-
signed for data augmentation or reducing the noise of the
data. In order to get a better expression of the skeleton
data, MTLN [10] converts the skeleton data from a Carte-
sian coordinate system to a cylindrical coordinate system.
And the experimental results validates the effectiveness of
the operation. However, such coordinate transformations
are fixed for all the skeleton samples without enough flexi-
bility, which leaves room for improvement.

On the other hand, one of the most critical problems has
always been how to extract useful features from the skeleton
sequences. Many early works tried the approach of hand-
crafted features [29, 31, 25], e.g. some probability based
approaches [31] constructed features from dynamic motion



and static skeletons. Since 2015, manual feature meth-
ods have been gradually surpassed by deep neural network
methods. Recurrent Neural Networks (RNNs) was first in-
troduced to skeleton sequence modeling. These RNN-based
methods, including H-RNN [4] and LSTM [18, 24, 33, 34,
13, 19] focus on modeling the information in the time do-
main and are lack of the ability of modeling the spatial in-
formation. Subsequently, the introduction of the Convolu-
tional Neural Networks (CNN) solved the above problem
of RNN. The feature extraction capabilities of CNN have
been verified on multiple computer vision tasks. Applying
CNN to skeleton-based action recognition requires format-
ting the skeleton sequence into an image form. [3] are the
first to convert the joints and timing of skeleton sequences
to the height and width of the images, followed by an image
classifier. Further improvements were made in HCN [15].
It enhanced the spatial co-occurrence features learning abil-
ities by modifying the convolution operation. But it does
not consider temporal domain modeling. A few years later,
graph-based convolutions (GCN) have emerged in this area.
Most recent related work is aimed to enhance feature ex-
traction in temporal or spatial(joint) domain based on ST-
GCN [30].

In this paper, we consider learning the spatio-temporal
features integratedly and globally. 1) ‘integratedly’ means
that the modeling of temporal information and spatial in-
formation is integrated. Differently, some previous work
such as STGR [14] designed a temporal module and a spa-
tial module separately which are responsible for temporal
modeling and spatial modeling respectively. These methods
do not satisfy ‘integratedly’. 2) ‘Globally’ means that the
model has the ability to learn global information directly,
both in terms of time and spatial dimensions. To the best of
our knowledge, most previous works did not have both of
these properties with in one model.

For many actions, spatio-temporal co-occurrence is es-
pecially important. Take the action of ‘touching head’ for
example, people usually pay attention to the position of the
hand at the beginning of the action, and then are concerned
with the position of the head later. So the early ‘hand’ and
the later ‘head’ are the key to distinguish this action cat-
egory. Considering that the previous methods did not in-
tegratedly consider temporal and spatial domain, we have
designed a method spatio-temporal-unit feature enhance-
ment (STUFE) to learn co-occurrence features across tem-
poral and spatial domains, and this method has good ver-
satility and can be directly used in the current mainstream
CNN and GCN architectures. To the best of our knowledge,
this is the first time to learn co-occurrence features across
spatial-temporal domain instead of doing it separately. Be-
sides co-occurrence mining, we also consider the problem
of skeleton data preprocessing. According to the previous
work [10], the skeleton sequence in the cylindrical coordi-

nate system is more helpful for action recognition than it in
the Cartesian coordinate system. Inspired by this finding,
we propose a method of active coordinate system transfor-
mation (ACSC) that converts each skeleton sequence into a
more suitable space. The entire conversion process is dif-
ferentiable, and its internal parameters can be automatically
updated under the guidance of the gradient. The workflow
of our method is shown in Fig. 1.

Our contributions can be summarized as follows: 1) For
the first time, we propose a spatio-temporal co-occurrence
feature learning method for skeleton-based action recongni-
tion. 2) We design an active coordinate system transforma-
tion that can better align the skeleton data for action recog-
nition.

2. Related Work

Action recognition is one of the key tasks in computer vi-
sion. There have been many approaches so far. According
to the difference of the modal of the input data, they can be
classified as RGB-based, depth-map based, skeleton-based,
and others [27]. For example, a RGB-based method[21]
uses video data as input, then a pose estimate method is in-
troduced for feature extraction. A typical depth-map based
method[26] uses depth map as input data, then using CNNs
for feature learning and classification. At the same time,
there is a method[2] that fuses multimodal data. Here, we
focus on the relevant work of skeleton-based action recog-
nition methods.

So, in this section, we first briefly cover the research re-
lated to skeleton-based recognition. Then, we summarize
the relevant methods from the perspective of co-occurrence
exploration.

2.1. Skeleton-based Action Recognition

The acquisition of skeleton data is becoming more and
more convenient, thanks to the popularity of low-cost depth
cameras [11, 36] and the rapid development of related tech-
nologies such as human posture estimation [1] for obtain-
ing skeleton data from a single picture. This has led to the
skeleton-based action recognition, attracting more attention
in the academia.

Unlike the methods based on handcrafted features, the
methods of learning feature representation directly from
raw data, relying on the powerful feature learning capa-
bilities of deep neural networks, have become the main-
stream in recent years. As mentioned before, the RNN
method [37, 35, 33] was once the mainstream. Then, a
spatio-temporal graph [7] is introduced, which is used to
express the relationships among body parts into the RNN.
Although rough, this is the prototype of the follow-up GCN
idea. Subsequently, skeleton sequences are manually trans-
formed into images to feed into CNN. CNN-based methods



[3, 10, 17] gradually became dominant with its super feature
extraction capability.

Nevertheless, the recent rise of the GCN-based ap-
proaches such as [30, 14] has shown greater potential with
its superior spatial relationship modeling capabilities. The
GCN method is derived from graph convolution. The earli-
est graph convolution is based on Graph Fourier Transform
[23, 6, 5]. ST-GCN [30] first used the spatial domain graph
convolution method to complete the skeleton-based action
recognition. [14] has added dynamic routing based on ST-
GCN, which can build more flexibly relationships among
the joints of the human body. Similarly, in [28] a motif no-
tation is introduced to model each joint in a skeleton.

XX

YY

ZZ

OO

xx

yy

zz

(x,y,z)(x,y,z)

e1

e2

e3

OO

xx

yy

zz

(x,y,z)(x,y,z)

’

’
’

’

’

’ ’ ’

’

(a) (b)

(c)

Figure 2: The idea of the ACSC method, (a) is the raw data, (b) is
the data transformed in the cylindrical coordinate system, and (c)
is the data we learned in the new coordinate system.

Although CNN-based and GCN-based methods are com-
parable in performance, GCN has better interpretability
than CNN. The advantage of the CNN method is that since
CNN has been successfully used in many fields, there are
more experiences on CNN’s network structure design and
training. The proposed method in this work is fully com-
patible with both models.

2.2. Co-occurrence Exploration

Human actions are usually associated with a specific set
of joint points at certain time steps. The human brain uses
this when distinguishing an action. For example, if some-
one identify the action of ‘touching back’ (backache), he or
she needs to focus on the hand and then turn the attention to
the back. Therefore, how to learn co-occurrence has always
been crucial for skeleton-based action recognition. Most of
the work has explored this aspect, even though some did

not mention the concept of co-occurrence. DeepLSTM [37]
introduced the fully connected layer to complete the co-
occurrence learning in the spatial domain. Global spatial
co-occurrence can also be learned by transforming the fea-
ture map in the channel and joint dimensions [15]. Previous
work only learn co-occurrence from spatial domain or the
temporal domain separately. For example, the spatial graph
router and the temporal graph router are respectively intro-
duced to extract co-occurrence features independently, and
finally the two are combined [14] . Different from these, our
approach directly performs co-occurrence learning across
both temporal and spatial domains.

3. Method

In this section, we introduce the on active coordinate
system conversion (ASCS) and spatio-temporal-unit feature
enhancement (STUFE). They have good compatibility and
are compatible with CNN-based and GCN-based models.

3.1. Active Coordinate System Conversion

The skeleton data of a person at time step t can be de-
noted as Xt = {X1

t , X
2
t , ..., X

j
t , ..., X

J
t } where Xj

t refers
to the coordinate value of the joint j at time t and J is
the number of joints. For a complete skeleton sequence,
it can be formulated as X = {X1, X2, ..., Xt, ..., XT } ∈
RD×T×J , where T is the number of frames in the sequence
and D is the depth dimension which is the dimensionality
of the coordinate space. For 3D skeleton data, D = 3.

The original skeleton data is based on the Cartesian co-
ordinate system. [x, y, z] denotes the original coordinate
value. The process of coordinate system conversion is rep-
resented as operator A . Then, the cylindrical coordinate
transformation process proposed by [10] can be expressed
as:

A

xy
z

 =


√
x2 + y2

arcsin(y/
√
x2 + y2)

z

 . (1)

Although good performance is achieved with the conver-
sion, we think that there might be a coordinate system more
suitable than the cylindrical coordinate system. We con-
tinue to advance on this direction and propose ACSC which
is to generalize A .

In detail, some formulation is needed. In 3D space,
the base of the original coordinate system is defined as
E = [~e1, ~e2, ~e3]. The transformed base can be formulated
as E′ = [~e1

′, ~e2
′, ~e3

′]. Obviously, in the inferring pro-
cess, the coordinate values are involved in the calculation,
and the base does not participate in any calculation. Here,
~υ = [x, y, z] and ~υ′ = [x′, y′, z′] represent initial coordi-
nate values and transformed coordinate values, respectively.
Each skeleton joint corresponds to a vector in space, and the
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Figure 3: Overview of the key steps of the STUFE algorithm. Feature map M
(n)
t,j is input. First step a) is to calculate the distance between

every two units. A matrix R consisting of all the results can be obtained after the step c) . Finally, after � summation in step (d), the C(n)

used for attention mechanism can be obtained.

vector can be expressed as a base vector multiplied by a co-
ordinate value. In any case, there must be

E~υ ≡ E′~υ′, (2)

(
~e1, ~e2, ~e3

)
·

xy
z

 =
(
~e1
′, ~e2

′, ~e3
′ ) ·

x′y′
z′

 . (3)

The transformation of the coordinate system is essentially
the conversion of the base. Here, A is still used to represent
the base transformation. The process of base conversion of
the coordinate system is,

E = E′A . (4)

We can get E~υ = E′A ~υ. According to Eqn. (4), E~υ =
E′A ~υ = E′~υ′ . In this way, the relationship of ~υ and ~υ′

that we are most concerned about can be found.

~υ′ = A ~υ. (5)

Finding a better coordinate system is actually to find a
better base conversion operator A . The change that A can
make is shown in Fig. 2. Unlike the fixed form of cylindri-
cal coordinate system conversion, we aim to transform A
into a learnable form.

Ideally A should have following properties: 1) The new
coordinate system generated by A should be orthogonal. 2)
The transformation itself should be nonsingular, otherwise
the dimensionality of the newly generated coordinate sys-
tem will be smaller than that of the original space. And this
will lose a lot of spatial information in the original skeleton
sequence, just as 3D data is projected onto a 2D plane.

In fact, it is difficult to find constraints on the orthogo-
nality to satisfy property 1) rigorously. Thus, we choose an
approximation strategy such that A can be approximated
by a multi-layer perceptron (MLP) and the transformation

of the coordinate system can be learned. In order to satisfy
property 2), based on MLP, the initial values of the parame-
ters must be selected carefully. Because if the initial param-
eters of the MLP happen to cause singularity of the skeleton
data, subsequent training will be difficult to take a turn for
the better. In order to ensure that the initial parameters are
meaningful and satisfy the property 2), the training is not
started immediately, but the MLP is used as a self-encoder
for first training. In other words, A at this time just serves
as ‘identity matrix’, which maps the base of the Cartesian
coordinate system to itself. Then, MLP is used to learn the
transform process.

Since the coordinate transformation involves only the
primitive input data, it has good versatility. It is compati-
ble with two mainstream models. The experimental details
are shown in Section 4.

3.2. Spatio-temporal-unit Feature Enhancement

Co-occurrence is very important for the recognition of
actions. Our method of spatio-temporal-unit feature en-
hancement (STUFE) is compatible with both CNN and
GCN. This is because the feature maps of CNN and GCN
are very similar. Thus, we use CNN as an example to illus-
trate the method.

The input skeleton data X ∈ RD×T×J can be regarded
as a standard 3D tensor and the subsequent feature maps
can be as well where D,T, J have same meaning as Sec-
tion 3.1. For the CNN model, the feature map of the nth

layer can be noted as M (n). M (n) ∈ RDn×Tn×Jn , where
Dn, Tn, Jn is the depth,height (time dimension) and width
(joint dimension) of the feature map of nth layer. We splits
the feature mapM (n) into basic spatio-temporal unitsM (n)

t,j

and each unitM (n)
t,j ∈ RDn×1×1. A feature mapM (n) have

T×J units totally. These units with high-level semantic fea-
tures are the key to our exploration of co-occurrence across
spatio-temporal domain.



The key steps of STUFE are shown in Fig. 3.
Start with Step (a) in Fig. 3. Here, we introduce a dis-

tance function Distance(unita, unitb), so that we can cal-
culate the distance between the unitM (n)

t,j and the remaining
units one by one. This distance function will be described
in detail later. Then just as (b) shown in Fig. 3, the calcu-
lation result can be written in the form of a matrix with the
size of T × J , representing the distance among M (n)

t,j and
all units. Here we record this result matrix as R(t,j). Simi-
larly, each unit M (n)

t,j has the corresponding matrix R(t,j)

through the above calculation. In total there are T × J
matrices like R(t,j). Let R denotes the stack of the ma-
trices. For feature map M (n), R can be reshaped such that
R ∈ R(Tn×Jn)×(Tn×Jn), shown as (c) in Fig. 3. Note that
R contains the distance of any two of spatio-temporal fea-
ture units in a specific semantic space. It also plays an im-
portant role in the visualization in Section 4.3.4. However,
the information currently contained in R cannot be directly
translated into the discriminative ability of the model. Step
(d) is to solve this problem. Next we elaborate Step (a) and
Step (d).
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For Step (a) which is about the distance function, we
want to allow units to map to a new space in which the
cosine distance between two units with co-occurrence can
be larger. Instead of directly calculating the cosine distance
between the feature units, we perform embedding firstly as
shown in Fig. 4. This embedding process can not be super-
vised directly, so this process needs to be restricted. Here,
a similar approach to ACSC in Section 3.1 is adopted. The
embedding model is separately trained by the way of auto-
encoder. This ensures that the embedding model has mean-
ingful initial parameters when the training begins. Subse-
quent training also limits the learning rate of the parameters
of this part. The magnitude of the parameter change is lim-

ited, making this part of the training more like finetuning.
For Step (d), although R contains the spatio-temporal

correlation information we want, its size is too large to be
used directly. To solve this problem, we used the attention
mechanism. As long as a group of units with co-occurrence
is enhanced by weighted summation, the effect of increas-
ing attention is achieved. In order to clarify this process,
now we define an operation �,

A�B =

M∑
i=1

N∑
j=1

Aij ·Bij , (6)

where A ∈ RM×N and B ∈ RD×M×N . Here, Aij is a
scalar and Bij is a vector of size D, So Aij · Bij is still a
vector of size d. R(t,j) �M (n) gives a tensor of the same
shape as a unit M (n)

t,j . Just as (d) shown in Fig. 3. Here we
introduce C(n),

C
(n)
t,j = Rt,j �M (n). (7)

When all calculations are completed, the shape of C(n) will
have the same shape as the original feature map M (n). The
whole process can be expressed in the form of an algorithm,
as shown in Algorithm 1. The final C(n) is an enhanced
feature map M (n). To make the whole process smoother,
we did not directly replace the original feature map M (n)

with C(n), but instead adopted a way to add M (n) to C(n)

with suitable weight as following formula:

M
(n)
final = ϕC(n) +M (n), (8)

where ϕ is not a hyperparameter, but is gradually increased
from 0 as a normal parameter.
M

(n)
final is the final enhanced feature map that can be

directly involved in subsequent CNN operations. So far
spatio-temporal-unit-based co-occurrence feature learning
has been completed.

4. Experiments
In this section, we evaluated the proposed ASCS and

STUFE on two major benchmarks NTU-RGB+D and SBU
Kinect Interaction. We first introduced the evaluation met-
rics and experimental details, and finally analyzed the re-
sults. All experiments are conducted on GTX2080Ti.

4.1. Datasets

4.1.1 NTU-RGB+D

The NTU-RGB+D[22] is currently the most widely used
and largest skeleton-based action recognition dataset. This
dataset contains 56000 action samples in 60 action classes.
These samples were taken by 40 volunteers in a laboratory
environment. The sensor uses Microsoft’s Kinect II[36],



Algorithm 1 algorithm for co-occurrence exploration

Input: M (n) feature map of the nth layer
Parameter: Function Distance()
Output: C(n)with the same shape as the M (n)

1: for all t ∈ [1, Tn], j ∈ [1, Jn] do
2: Initialize R(t,j).
3: for all t′ ∈ [1, Tn], j

′ ∈ [1, Jn] do
4: R

(t,j)
t′,j′ ← Distance(M

(n)
t,j ,M

(n)
t′,j′)

5: end for
6: Initialize S ← 0
7: for all t′ ∈ [1, Tn], j

′ ∈ [1, Jn] do
8: S ← R

(t,j)
t′,j′ ·M

(n)
t′,j′ + S

9: end for
10: C

(n)
t,j ← S

11: end for
12: return C(n)

Method CS CV

Lie Group [25] CVPR 2014 50.1 52.8
H-RNN [4] CVPR 2015 59.1 64.0

Deep RNN [22] CVPR 2016 59.3 64.1
Deep LSTM [22] CVPR 2016 60.7 67.3
PA LSTM [22] CVPR 2016 62.9 70.3
ST-LSTM [18] ECCV 2016 62.9 70.3
STA-LSTM [24] AAAI 2017 73.4 81.2

Visualization CNN [20] PR 2017 76.0 82.6
VA-LSTM [33] ICCV 2017 79.4 87.6

Temporal Conv [12] CVPRW 2017 74.3 83.1
Clips + CNN + MTLN [10] CVPR 2017 79.6 84.8

Skepxels [17] arXiv 2017 81.3 89.2
HCN [15] IJCAI 2018 86.5 91.1

RHCN [Described in Sec. 4.2] 84.2 90.7
3D-POSE-S2 [21] CVPR 2018 82.4 86.7

ST-GCN [30] AAAI 2018 81.5 88.3
SR-TSL [30] ECCV 2018 84.8 92.4

motif-GCNs [28] AAAI 2019 84.2 90.2
STGR-GCN [14] AAAI 2019 86.9 92.3
RHCN + ACSC + STUFE 86.9 92.5

Table 1: Recognition performance on NTU-RGB+D dataset. We
report the accuracies on cross-subject (CS) and cross-view (CV)
benchmarks.

which can directly output the three-dimensional coordinates
of each joint of the human body. Each sample consists of the
skeleton containing 25 joints and each sample contains up to
two subjects. All action classes are roughly divided as daily
action, medical action, and interactive action. The authors
of the NTU-RGB+D recommend two evaluation protocols.
1)Cross-subject (CS): According to the different subjects,
40,320 samples are divided into training sets, and 16560

are used for testing. 2)Cross-view (CV):Under this proto-
col, the training data comes from cameras at view 2 and 3,
while the data from cameras with view 1 is used for test-
ing. The two parts consist of 37,920 and 18,960 samples,
respectively. In order to facilitate comparison with previous
work, We use top1 accuracy as a benchmark.

4.1.2 SBU Kinect Interaction

SBU Kinect Interaction [32] is a dataset that focuses on two
person interaction. All data is collected by Kinect. The
entire dataset contains 282 skeleton sequences divided into
8 action classes. The whole skeleton sequence consists of
6822 frames. Since the acquisition device (Kinect I) is rel-
atively behind the NTU-RGB+D (Kinect II), each skeleton
contains only 15 joints. The evaluation protocol uses the
subject-independent 5-fold cross validation recommended
by the author [32].

4.2. Implementation Details

For the basic model of CNN, we chose HCN[15] for test-
ing. Since the HCN model is not open source, it can only
be reproduced according to the paper. However, in doing so,
the performance will be slightly different from the original
text. Here we call it RHCN. By the way, there is a perfor-
mance gap between origin HCN (98.6) and RHCN(97.4)
that we reproduced. This is because the author of HCN
adjusted the network structure for the SBU dataset. Here,
for a fair comparison, our RHCN is identical on both two
datasets. For the multi-person samples, the following pro-
cessing method is adopted. First, we default that each sam-
ple contains two persons. All samples in the SBU Kinect
Interaction [32] contain exactly two persons, but some sam-
ples in the NTU-RGB+D [22] contain only one. For the
single-person sample, we extend it by filling in zeros, and
then use the element-wise maximum operation for feature
fusion. Because according to experience[15], using such
operations for fusion can reduce the impact of padded ze-
ros. The model is optimized by the Adam optimization al-
gorithm, and the learning rate is set to 0.001. The learning
rate of the ASCS module and the STUFE module is set to
0.0001. The weight decay is 10−4 and the batch size is 64.
Setting the learning rate in this way is to limit the fluctua-
tion of parameters in ASCS and STUFE, which is especially
important in the early stage of training.

For the GCN-based approach, the open source ST-GCN
is directly used as the basis. Here, the main part of the
model is optimized by the SGD algorithm with a learning
rate of 0.01. Similarly, the proposed module uses a smaller
learning rate of 0.001.Weight decay and batch size are the
same as RHCN. All implementation work is based on the
deep learning framework Pytorch 1.0.
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.

Methods
Accuracy (%)

X=ST-GCN X=RHCN
SBU NTU SBU NTU

X 94.3 81.5 97.4 84.2
X + CCS 94.4 81.5 97.5 84.3

X + ACSC 94.8 81.7 97.7 84.9
X + STUFE 95.2 82.3 98.3 86.1

X + ACSC + STUFE 95.6 82.5 98.7 86.9

Table 2: Ablation study on the SBU Kinect Interaction dataset and
NTU-RGB+D dataset CS benchmark. CCS refers to the cylindri-
cal coordinate system.

4.3. Analysis of Results

4.3.1 Comparison on NTU-RGB+D

On NTU-RGB+D [22] dataset, our performance exceeds all
previous methods under CV protocol, including the latest
approach [28, 14] just introduced in 2019 as shown in Table
1. Our method exceeded it by 0.2% in top-1 accuracy. There
are similar results in the CS protocol, except that we tied
with STGR-GCN [14]. Even so, the number of parameters
size is still smaller than STGR-GCN. Verifying the effec-
tiveness of STUFE and ACSC is more important to us. So
we verified them on CS protocol of NTU-RGB+D dataset
based on both RHCN and ST-GCN as shown in Table 2. The
method we propose can produce 2.7% improvement based
on RHCN. The results fully demonstrate the effectiveness
of our approach.

4.3.2 Comparison on SBU Kinect Interaction

The ablation study based on the SBU Kinect Interaction
dataset is also shown in Table 2. Both ACSC and STUFE
have been fully validated. In particular, for STUFE, there

Method Accuracy (%)

Raw Position [32] CVPRW 2012 49.7
Joint feature [8] ICMEW 2014 86.9

CHARM [16] ICCV2015 86.9
H-RNN [4] CVPR 2015 80.4

ST-LSTM [18] ECCV 2016 88.6
Co-occurrence-LSTM [37] AAAI 2016 90.4

STA-LSTM [24] AAAI 2017 91.5
ST-LSTM + Trust Gate [18] ECCV 2016 93.3

VA-LSTM [33] ICCV 2017 97.6
RHCN + ACSC + STUFE 98.7

Table 3: Action recognition performance for skeleton-based mod-
els on the SBU Kinect Interaction dataset. We report Top-1 accu-
racy.

Method training time (s) increments(%)

RHCN 7023 baseline
RHCN+ACSC 7213 +2.71%
RHCN+STUFE 7721 +9.94%

RHCN+ACSC+STUFE 7962 +13.37%

Table 4: The increase in model’s training time when ACSC and
STUFE are added.

is a gain of 0.9% in the case where the base performance is
already high. In Table 3, we compare the performance of
proposed method to other methods’. Although we empha-
size that our main contribution is not absolute performance,
we still outperforms the state-of-the-art approaches.

4.3.3 Learning cost

In addition to performance metrics, we also consider the
learning time cost of the proposed method. As shown in
Table 4. We compared the increase in training time after the
ACSC and STUFE was introduced to RHCN respectively.
From the results, ACSC and STUFE did not bring too much
computational cost. We think this is reasonable compared
to the performance improvement it brings.

4.3.4 Visualization

We have visualized R of GCN model, as shown in Fig.5.
R contains the distance information between all spatio-
temporal units. Considering that the size of R is very large
the size of which is T 2

n × J2
n, it is difficult to directly visu-

alize it, so we simplified it. The length of the original 64
frames are merged as three segments, denoted as S1, S2,
and S3, respectively. At the same time, the hand joints are
simplified, and the 25 joints are eventually merged into 21.
Finally, the distance values are normalized and the distances
with small values are filtered out. The larger cosine distance



value (the higher the correlation), the darker the color of
the connecting line between units. It can be found that for
‘touching back’, the ‘hand’ at S1 is highly correlated with
the ‘back’ at S3 . This is in line with our previous specula-
tion about co-occurrence.

5. Conclusion
In this paper, we propose two novel methods for

skeleton-based action recognition. Active coordinate sys-
tem conversion (ACSC) can actively convert the coordinate
system of the skeleton sample to a new coordinate sys-
tem that is more conducive to model discriminationd, and
STUFE can mine the co-occurrence features across tempo-
ral and spatial domain. Moreover, the proposed methods are
compatible with the current mainstream GCN-based model
and CNN-based model. In order to verify the effectiveness
of proposed methods, we tested on two benchmarks and the
accuracy eventually surpassed the previous state-of-the-art.
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