

Graph Networks for Multiple Object Tracking

Jiahe Li, Xu Gao, Tingting Jiang

https://github.com/yinizhizhu/GNMOT.

Motivation

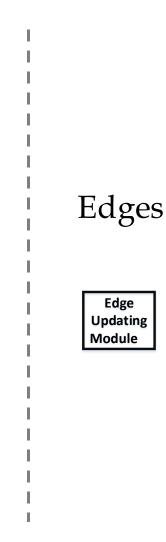
- ☐ Most graph models are static
 - Nodes and edges are fixed
- ☐ Graph Network
 - Has the ability of reasoning
 - Nodes and edges will be updated iteratively and reasonably

Contributions

- ☐ We propose a new near-online MOT method with an end-to-end graph network framework followed by strategies for handling missing detections.
- ☐ The updating mechanism is carefully designed in our graph networks.
- ☐ The proposed method achieves encouraging performance.

Graph Network

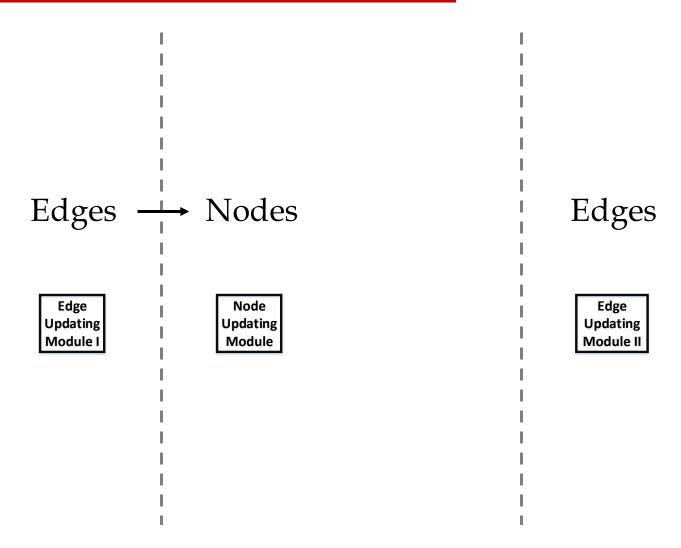
- Battaglia et al. Interaction networks for learning about objects, relations and physics. NIPS, 2016
 - Graph network has the ability of reasoning
- ☐ Battaglia et al. Relational inductive biases, deep learning, and graph networks. arXiv, 2018.
 - General graph network framework
 - The node, the edge and the global variable
 - Updating modules for each component

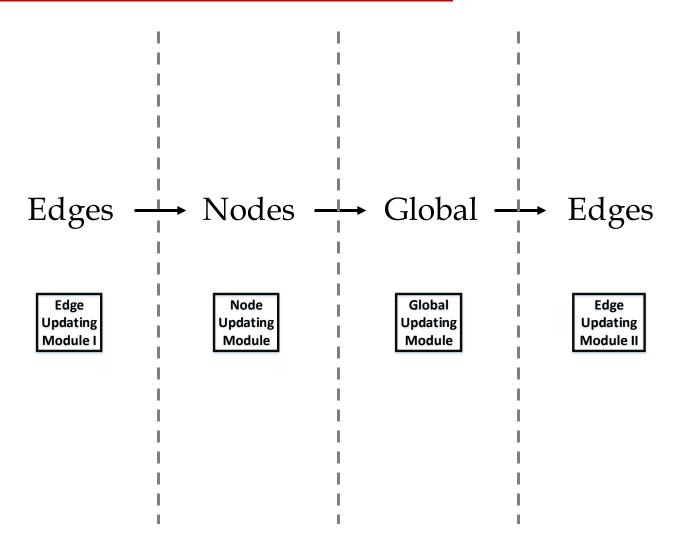


Nodes

Node Updating Module Edges

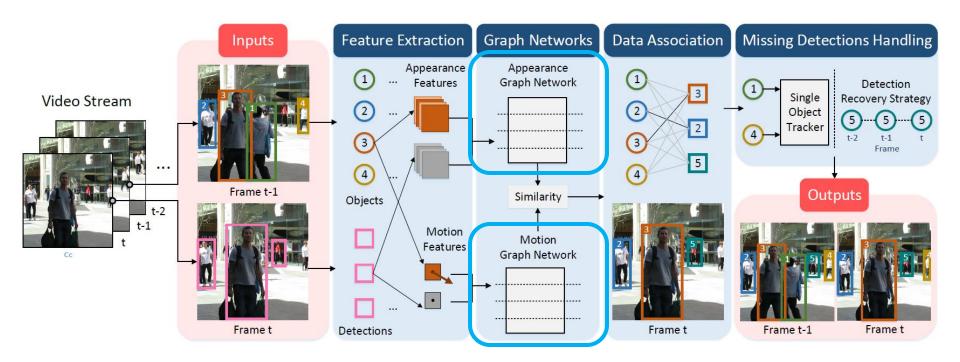
Edge Updating Module





The pipeline of our method

- ☐ Appearance Graph Network
- ☐ Motion Graph Network



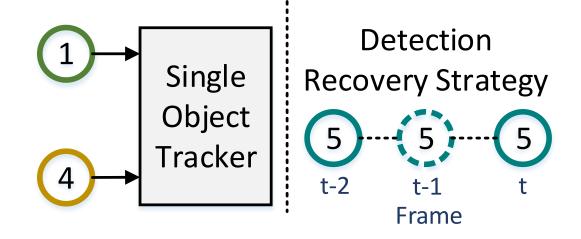
Weighted Strategy

Graph Networks Appearance Graph Network Similarity Motion **Graph Network**

$$S = \alpha AGN + (1 - \alpha)MGN$$

AGN and **MGN** denote the appearance similarity and the motion similarity respectively.

Missing Detection Handling



Main Results

Dataset	Detection	Methods	МОТА	IDF1	МТ	ML	FP	FN	IDS	FM
MOT16	Public	LINF, ECCV 2016	41.0	45.7	11.6%	51.3%	<u> 7896</u>	99224	430	963
		MHT_bLSTM*, ECCV 2018	42.1	<u>47.8</u>	14.9%	44.4%	11637	93172	753	1156
		NOMT, ICCV 2015	46.4	53.3	18.3%	41.4%	9753	87565	359	504
		Ours without SOT	47.4	42.6	14.5%	34.4%	77 95	<u>86178</u>	1931	3389
		Ours	4 7 · 7	43.2	<u>16.1%</u>	34.3%	9518	83875	1907	3376
	Private	Ours without SOT	58.4	54.8	2 7.3%	23.2%	5731	68630	1454	1730
MOT17	Public	MHT_bLSTM*, ECCV 2018	47.5	51.9	18.2%	41.7%	<u>25981</u>	268042	2069	3124
		Ours without SOT	50.1	46.3	18.6%	33.3%	25210	250761	5470	8113
		Ours	50.2	<u>47.0</u>	19.3%	32. 7%	29316	246200	5273	<u> 7850</u>

Table 1. Experiments on MOT16 and MOT17 test set. The best result in each metric is highlighted in bold, and the second best result is underlined. * indicates the use of additional training data.

Thanks